APPLE MACINTOSH TECHNICAL INFORMATION|

SpInside Macintosh

May 1992

Splnside Macintosh 203 =—————— 0| H

SpInside Macintosh

An on-line development prototype of
Apple’s nside Macintosh Volumes [-V

Copyrig 25-1990 by fpple Camputer, Inc.
11 Fights Resarvac

Splnside Macintosh -- May 1992 -- 1 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

FILE:

Splnside Mac Chapters

Splnside Macintosh — Listing by Chapter

November 1989

Source:

Splnside Macintosh Stack 1.0

For best viewing and printing of these chapters you should use a non-proportional font
as Courier.

such

000

00la
001b
002

003a
003b
003c
003d
003e
003f
004

005a
005b
006a
006b
006¢c
006d
006e
006f
006g
007a
007b
007c
007d
007e
007f
0079
008a
008b
009a
009b
009c
009d
010

Olla
011b
0O1i1c
011d
Olle
011f
011g
011h
011i
011j
011k
012

013a
013b
014

015a
015b
015c
0l16a

- Preface

- A Road Map
- A Road Map
- Compatibility Guidelines

- The
- The
- The
- The
- The
- The

Macintosh User
Macintosh User
Macintosh User
Macintosh User
Macintosh User
Macintosh User

Interface
Interface
Interface
Interface
Interface
Interface

- Macintosh Memory Management:
- Using Assembly Language

- Using Assembly Language

- QuickDraw

- QuickDraw

- QuickDraw

- QuickDraw

- QuickDraw

- QuickDraw

- QuickDraw

- Color QuickDraw
- Color QuickDraw
- Color QuickDraw
- Color QuickDraw
- Color QuickDraw
- Color QuickDraw
- Color QuickDraw
- Graphics Devices
- Graphics Devices
- TextEdit

- TextEdit

- TextEdit

- TextEdit

Apple Desktop Bus
AppleTalk Manager
AppleTalk Manager
AppleTalk Manager
AppleTalk Manager
AppleTalk Manager
AppleTalk Manager
AppleTalk Manager
AppleTalk Manager
AppleTalk Manager
AppleTalk Manager
AppleTalk Manager
Binary-Decimal Conversion Package

- The
- The
- The
- The
- The
- The
- The
- The
- The
- The
- The
- The
- The
- The
- The
- The
- The
- The
- The
- The

Color Manager
Color Manager

Color Picker Package

Control Manager
Control Manager
Control Manager
Control Panel

Guidelines
Guidelines
Guidelines
Guidelines
Guidelines
Guidelines
An Introduction

Splnside Macintosh -- May 1992 -- 2 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

016b
017

018a
018b
019a
019b
019c
019d
019
020a
020b
020c
020d
021

022

023a
023b
023c
023d
023e
023f
023g
023h
023i
023)
023k
0231
024

025

026a
026b
026c¢c
026d
027a
027b
028a
028b
029a
029b
029c
030a
030b
030c
031a
031b
031c
031d
03le
032

033a
033b
034

035a
035b
036a
036b
036¢c
037a
037b
037c
037d
038

039a
039b
039c
039d

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The

Control Panel

Deferred Task Manager

Desk Manager

Desk Manager

Device Manager

Device Manager

Device Manager

Device Manager

Device Manager

Dialog Manager

Dialog Manager

Dialog Manager

Dialog Manager

Disk Driver

Disk Initialization Package
File Manager

File Manager

File Manager

File Manager

File Manager

File Manager

File Manager

File Manager

File Manager

File Manager

File Manager

File Manager

Finder Interface
Floating-Point Arithmetic & Transcendental Functs Pkgs
Font Manager

Font Manager

Font Manager

Font Manager

International Utilities Package
International Utilities Package
List Manager Package

List Manager Package
Macintosh Hardware
Macintosh Hardware
Macintosh Hardware

Memory Manager

Memory Manager

Memory Manager

Menu Manager

Menu Manager

Menu Manager

Menu Manager

Menu Manager

Operating System Event Manager
Operating System Utilities
Operating System Utilities
Package Manager

Palette Manager

Palette Manager

Printing Manager

Printing Manager

Printing Manager

Resource Manager

Resource Manager

Resource Manager

Resource Manager

Scrap Manager

Script Manager

Script Manager

Script Manager

Script Manager

Splnside Macintosh -- May 1992 -- 3 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

039%e - The Script Manager

040a - The SCSI Manager

040b - The SCSI Manager

041 The Segment Loader

042a - The Serial Drivers

042b - The Serial Drivers

043 The Shutdown Manager

0O44a - The Slot Manager

044b - The Slot Manager

044c - The Slot Manager

045a - The Sound Driver

045b - The Sound Driver

046a - The Sound Manager

046b - The Sound Manager

046¢c - The Sound Manager

O47a - The Standard File Package
047b - The Standard File Package
048 The Start Manager

049 The System Error Handler
050 The System Resource File
051 The Time Manager

052a - The Toolbox Event Manager
052b - The Toolbox Event Manager
052c - The Toolbox Event Manager
053 The Vertical Retrace Manager
054a - The Window Manager

054b - The Window Manager

054c - The Window Manager

054d - The Window Manager

054e - The Window Manager

055a - Toolbox Utilities

055b - Toolbox Utilities

056 Appendix A - Result Codes
057 Appendix B - Routines That May Move or Purge Memory
058a - Appendix C - System Traps
058b - Appendix C - System Traps
059 Appendix D - Global Variables
060a - Glossary

060b - Glossary

060c - Glossary

[END]

END OF FILE Splnside Mac Chapters

Splnside Macintosh -- May 1992 -- 4 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

#t FILE: 000 Preface

PREFACE

About Splnside Macintosh
Inside Macintosh: The Book
The Languages
What’s in Each Volume
Version Numbers
Compatibility
A Horse of a Different Color
The Structure of a Typical Chapter
Conventions

ABOUT SPINSIDE MACINTOSH

Splnside Macintosh is an attempt at putting the entire contents of “Inside Macintosh”
into a useable electronic format. It has been inspired by developer feedback on the
Technical Notes Stack, “Phil & Dave’s Excellent CD”, and by the need for an electronic
version of our beloved “Inside Mac.” At this stage, Splnside Macintosh is nothing
more than a rough development PROTOTYPE.

It combines “Inside Macintosh” Volumes I-V into a single, sometimes coherent,
electronic source. This text has not been rewritten for this format (i.e., we even
left the Lisa references), but we did try to correct small things where we could.
Information from Volumes 1V and V has been inserted where deemed appropriate into the
original text; however, some paragraphs may seem out of place. We tried to note
machine- or system software-dependent references where the text may not have been
clear, and we also incorporated an interim chapter on the Script Manager 2.0 and
completely replaced the Sound Manager chapter. Hopefully, we haven’t introduced any
new errors to the original text.

The chapters are numbered according to their order in this stack, and other than
navigation through this stack, these numbers have neither a correlation to the
original chapter numbers nor any other significance.

We’re distributing Splnside Macintosh as a development prototype because we feel it is
more important for you to have it to use right now than to wait for us to finish a
release-quality version. We also really want your feedback on it, so you, the real
users of “Inside Macintosh,” can have a hand in designing your ideal electronic
version instead of us telling you how it should be. Tell us what you like and dislike
about the format, organization, and usefulness (or lack thereof). It is this
feedback, both good and bad, that will ultimately decide the future of Splnside Mac
and its derivatives.

Thanks for your support and especially for your patience. Have at it!

Inside Macintosh: The Book

Inside Macintosh is a five-volume set of manuals that tells you what you need to know
to write software for the Macintosh family of computers. Although directed mainly
toward programmers writing standard Macintosh applications, Inside Macintosh also
contains the information needed to write simple utility programs, desk accessories,
device drivers, or any other Macintosh software. It includes:

= the user interface guidelines for applications on the Macintosh

Splnside Macintosh -- May 1992 -- 5 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

= a complete description of the routines available for your program
to call (both those built into the Macintosh and others on disk),
along with related concepts and background information

= a description of the Macintosh 128K, 512K, and Plus hardware

It does not include information about:

< Programming in general.
Getting started as a developer. For this, write to:

Developer Programs

Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-2C
Cupertino, CA 95014

(408) 974-4897

= Any specific development system, except where indicated. You’ll
need to have additional documentation for the development system
you’re using.

e The Standard Apple Numerics Environment (SANE), which your program
can access to perform extended-precision floating-point arithmetic
and transcendental functions. This environment is described in the
Apple Numerics Manual.

= A description of Macintosh family hardware since the Macintosh Plus.
Refer to the “Macintosh Family Hardware Reference” for this information.

= A description of card architecture and programming techniques for
slot-based Macintosh systems. Refer to “Designing Cards and Drivers
for the Macintosh Il and Macintosh SE” for this information.

You should already be familiar with the basic information that’s in Macintosh, the
owner’s guide, and have some experience using a standard Macintosh application (such
as MacWrite).

The Languages

The routines described in this book are written in assembly language, but (with a few
exceptions) they’re also accessible from higher-level languages. The first four
volumes of Inside Macintosh document the interfaces to these routines on the Lisa
Workshop development system. A powerful new development system, the Macintosh
Programmers Workshop (MPW), is now available. Volume V documents the MPW Pascal
interfaces to the routines and the symbolic identifiers defined for assembly-language
programmers using MPW. These identifiers are usually identical to their Lisa Workshop
counterparts. |If

you’re using a different development system, its documentation should tell you how to
apply the information presented here to that system.

Inside Macintosh is intended to serve the needs of both high-level language and
assembly-language programmers. Every routine is shown in its Pascal form (if it has
one), but assembly-language programmers are told how they can access the routines.
Information of interest only to assembly-language programmers is set apart and labeled
so that other programmers can conveniently skip it.

Familiarity with MPW Pascal (or a similar high-level language) is recommended for all
readers, since it’s used for most examples. MPW Pascal is described in the
documentation for the Macintosh Programmer’s Workshop.

What’s in Each Volume

Inside Macintosh consists of five volumes. Volume 1 begins with the following
information of general interest:

= a “road map” to the software and the rest of the documentation

Splnside Macintosh -- May 1992 -- 6 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

= the user interface guidelines

= an introduction to memory management (the least you need to know,
with a complete discussion following in Volume 11)

< some general information for assembly-language programmers

It then describes the various parts of the User Interface Toolbox, the software in ROM
that helps you implement the standard Macintosh user interface in your application.
This is followed by descriptions of other, RAM-based software

that’s similar in function to the User Interface Toolbox. (The software overview in
the Road Map chapter gives further details.)

Volume Il describes the Operating System, the software in ROM that does basic tasks
such as input and output, memory management, and interrupt handling. As in Volume 1,
some functionally similar RAM-based software is then described.

Volume 111 discusses your program’s interface with the Finder and then describes the
Macintosh 128K and 512K hardware. A comprehensive summary of all the software is
provided, followed by some useful appendices and a glossary of all terms defined in
Inside Macintosh.

Volume IV is a companion to the first three volumes that gives specific information on
writing software to take advantage of the features of the Macintosh Plus and the
Macintosh 512 enhanced. A familiarity with the material presented in the First three
volumes is assumed, since most of the information presented in Volume IV consists of
changes and additions to that original material. This volume also introduces four
additional chapters—“The System Resource File”, “The List Manager”, “The SCSI
Manager”, and “The Time Manager™.

Volume V presents new material specific to the Macintosh SE and Macintosh 11
computers. Familiarity with the material presented in the first four volumes is
assumed, since most of the information presented in Volume V consists of changes and
additions to that original material.

Version Numbers
This edition of Splnside Macintosh describes the following versions of the software:

= version 105 of the ROM in the Macintosh 128K or 512K
= version 112 of the ROM image installed by MacWorks in the Macintosh XL
e version 117 ($75) of the ROM in the Macintosh Plus and
Macintosh 512K enhanced
= version 118 ($76) of the ROM in the Macintosh SE
version 120 ($78) of the ROM in the Macintosh 11
< version 1.1 and 2.0 of the Lisa Pascal interfaces and
the assembly-language definitions
= version 2.0 of the MPW Pascal interfaces and
the assembly-language definitions

Some of the RAM-based software is read from the file named System (usually kept in the
System Folder). This manual describes the software in the System file whose creation
date is May 2, 1984, System file version 3.2 whose creation date is June 4, 1986, and
System file version 4.1. In certain cases, a feature can be found in earlier versions
of the System File; these cases are noted in the text.

Compatibility

Version 117 ($75) of the ROM, also known as the 128K ROM, is provided on the Macintosh
512K enhanced and Macintosh Plus.

Note: A partially upgraded Macintosh 512K is identical to the Macintosh
512K enhanced, while a completely upgraded Macintosh 512K includes
all the features of the Macintosh Plus.

SpInside Macintosh -- May 1992 -- 7 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Version 105 ($69) of the ROM (the version described in the first three volumes of
Inside Macintosh), also known as the 64K ROM, is provided on the Macintosh 128K and
512K.

Most applications written for the 64K ROM run without modification on machines
equipped with the 128K ROM. Applications that use the routines and data structures
found in the 128K ROM, however, may not function on machines equipped with the 64K
ROM.

Programmers may wish to determine which version of the ROM is installed in order to
take advantage of the features of the 128K ROM whenever possible. You can do this by
checking the ROM version number returned by the Operating System Utility procedure
Environs; if the version number is greater than or equal to 117 ($75), it’s safe to
use the routines and data structures described in this volume.

Assembly-language note: A faster way of determining whether the 128K ROM
is present is to examine the global variable Rom85
(a word); it’s positive (that is, the high-order
bit is 0) if the 128K ROM is installed.

A HORSE OF A DIFFERENT COLOR

On an innovative system like the Macintosh, programs don’t look quite the way they do
on other systems. For example, instead of carrying out a sequence of steps in a
predetermined order, your program is driven primarily by user actions (such as
clicking and typing) whose order cannot be predicted.

You”ll probably find that many of your preconceptions about how to write applications
don’t apply here. Because of this, and because of the sheer volume of information in

Inside Macintosh, it’s essential that you read the Road Map chapter. It will help you
get oriented and figure out where to go next.

THE STRUCTURE OF A TYPICAL CHAPTER

Most chapters of Inside Macintosh have the same structure, as described below. Reading
through this now will save you a lot of time and effort later on. It contains
important hints on how to find what you’re looking for within this vast amount of
technical documentation.

Every chapter begins with a very brief description of its subject and a list of what
you should already know before reading that chapter. Then there’s a section called,
for example, “About the Window Manager’, which gives you more information about the
subject, telling you what you can do with it in general, elaborating on related user
interface guidelines, and introducing terminology that will be used in the chapter.
This is followed by a series of sections describing important related concepts and
background information; unless

they’re noted to be for advanced programmers only, you’ll have to read them in order
to understand how to use the routines described later.

Before the routine descriptions themselves, there’s a section called, for example,
“Using the Window Manager”. It introduces you to the routines, telling you how they
fit into the general flow of an application program and, most important, giving you an
idea of which ones you’ll need to use. Often you’ll need only a few routines out of
many to do basic operations; by reading this section, you can save yourself the
trouble of learning routines you’ll never use.

Then, for the details about the routines, read on to the next section. It gives the
calling sequence for each routine and describes all the parameters, effects, side
effects, and so on.

Splnside Macintosh -- May 1992 -- 8 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Following the routine descriptions, there may be some sections that won’t be of
interest to all readers. Usually these contain information about advanced techniques,
or behind the scenes details for the curious.

For review and quick reference, each chapter ends with a summary of the subject
matter, including the entire Pascal interface and a separate section for assembly-
language programmers.

CONVENTIONS

The following notations are used in Inside Macintosh to draw your attention to
particular items of information:

Reader’s guide: Advice to you, the reader, that will help you decide whether
or not you need to understand the material in a specific
chapter or section.

Note: An item of technical information that you may find interesting or useful.
Warning: A point you need to be cautious about

Assembly-language note: Information of interest to assembly-language
programmers only. For a discussion of Macintosh
assembly-language programming, see the chapter
“Using Assembly Language™.

64K ROM note: A note that points out some difference between the 64K ROM
and 128K ROM.

[Not in ROM] Routines marked with the notation [Not in ROM] are not part of
the Macintosh ROM. Depending on which System file the user has
and on how complete the interfaces are in the development system
you’re using, these routines may or may not be available.
They’re available with Version 4.1 and later of the Macintosh
System file and in programs developed with the Macintosh
Programmer’”s Workshop.

[Macintosh 117 Routines marked with the name or names of specific models
work only on those machines.

END OF FILE 000 Preface

Splnside Macintosh -- May 1992 -- 9 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

##H# FILE: 001 A Road Map

A ROAD MAP

About This Chapter
Overview of the Software
The Toolbox and Other High-Level Software
The Operating System and Other Low-Level Software
A Simple Example Program
Where to Go From Here

ABOUT THIS CHAPTER

This chapter introduces you to the “inside” of Macintosh: the Operating System and
User Interface Toolbox routines that your application program will call. It will help
you Figure out which software you need to learn more about and how to proceed with the
rest of the Inside Macintosh documentation. To orient you to the software, it presents
a simple example program.

OVERVIEW OF THE SOFTWARE

The routines available for use in Macintosh programs are divided according to
function, into what are in most cases called “managers” of the feature that they
support. As shown in Figure 1, most are part of either the Operating System or the
User Interface Toolbox and are in the Macintosh ROM.

The Operating System is at the lowest level; it does basic tasks such as input and
output, memory management, and interrupt handling. The User Interface Toolbox is a
level above the Operating System; it helps you implement the standard Macintosh user
interface in your application. The Toolbox calls the Operating System to do low-level
operations, and you’ll also call the Operating System directly yourself.

RAM-based software is available as well. In most cases this software performs
specialized operations (such as floating-point arithmetic) that aren’t integral to the
user interface but may be useful to some applications.

The Toolbox and Other High-Level Software

The Macintosh User Interface Toolbox provides a simple means of constructing
application programs that conform to the standard Macintosh user interface. By
offering a common set of routines that every application calls to implement the user
interface, the Toolbox not only ensures familiarity and consistency for the user but
also helps reduce the application’s code size and development time. At the same time,
it allows a great deal of flexibility: An application can use its own code instead of
a Toolbox call wherever appropriate, and can define Its own types of windows, menus,
controls, and desk accessories.

Figure 2 shows the various parts of the Toolbox in rough order of their relative
level . There are many interconnections between these parts; the higher ones often call
those at the lower levels. A brief description of each part is given below, to help
you Figure out which ones you’ll need to learn more about. Details are given in the
Inside Macintosh chapter on that part of the Toolbox. The basic Macintosh terms used
below are explained in Macintosh, the owner’s guide.

SpInside Macintosh -- May 1992 -- 10 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

To keep the data of an application separate from its code, making the data easier to
modify and easier to share among applications, the Toolbox includes the Resource
Manager. The Resource Manager lets you, for example, store menus separately from your
code so that they can be edited or translated without requiring recompilation of the
code. It also allows you to get standard data, such as the I-beam pointer for
inserting text, from a shared system file. When you call other parts of the Toolbox
that need access to the data, they call the Resource Manager. Although most
applications never need to call the Resource Manager directly, an understanding of the
concepts behind it is essential because they’re basic to so many other operations.

e=<Click on the lllustration button, and refer to Figure 1l.eee
Figure 1-Overview

ee<Click on the Illustration button, and refer to Figure 2.eee
Figure 2-Parts of the Toolbox

Graphics are an important part of every Macintosh application. All graphic operations
on the Macintosh are performed by QuickDraw. To draw something on the screen, you’ll
often call one of the other parts of the Toolbox, but it will in turn call QuickDraw.
You”ll also call QuickDraw directly, usually to draw inside a window, or just to set
up constructs like rectangles that you’ll need when making other Toolbox calls.
QuickDraw’s underlying concepts, like those of the Resource Manager, are important for
you to understand.

Graphics include text as well as pictures. To draw text, QuickDraw calls the Font
Manager, which does the background work necessary to make a variety of character fonts
available in various sizes and styles. Unless your application includes a font menu,
you need to know only a minimal amount about the Font Manager.

An application decides what to do from moment to moment by examining input from the
user in the form of mouse and keyboard actions. It learns of such actions by
repeatedly calling the Toolbox Event Manager (which in turn calls another, lower-level
Event Manager in the Operating System). The Toolbox Event Manager also reports
occurrences within the application that may require a response, such as when a window
that was overlapped becomes exposed and needs to be redrawn.

All information presented by a standard Macintosh application appears in windows. To
create windows, activate them, move them, resize them, or close them, you’ll call the
Window Manager. It keeps track of overlapping windows, so you can manipulate windows
without concern for how they overlap. For example, the Window Manager tells the
Toolbox Event Manager when to inform your application that a window has to be redrawn.
Also, when the user presses the mouse button, you call the Window Manager to learn
which part of which window it was pressed in, or whether it was pressed in the menu
bar or a desk accessory.

Any window may contain controls, such as buttons, check boxes, and scroll bars. You
can create and manipulate controls with the Control Manager. When you learn from the
Window Manager that the user pressed the mouse button inside a window containing
controls, you call the Control Manager to find out which control it was pressed in, if
any.

A common place for the user to press the mouse button is, of course, in the menu bar.
You set up menus in the menu bar by calling the Menu Manager. When the user gives a
command, either from a menu with the mouse or from the keyboard with the Command key,
you call the Menu Manager to find out which command was given.

To accept text typed by the user and allow the standard editing capabilities,
including cutting and pasting text within a document via the Clipboard, your
application can call TextEdit. TextEdit also handles basic formatting such as word
wraparound and justification. You can use it just to display text if you like.

When an application needs more information from the user about a command, it presents
a dialog box. In case of errors or potentially dangerous situations, it alerts the

SpInside Macintosh -- May 1992 -- 11 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

user with a box containing a message or with sound from the Macintosh’s speaker (or
both). To create and present dialogs and alerts, and find out the user’s responses to
them, you call the Dialog Manager.

Every Macintosh application should support the use of desk accessories. The user opens
desk accessories through the Apple menu, which you set up by calling the Menu Manager.
When you learn that the user has pressed the mouse button in a desk accessory, you
pass that information on to the accessory by calling the Desk Manager. The Desk
Manager also includes routines that you must call to ensure that desk accessories work
properly.

As mentioned above, you can use TextEdit to implement the standard text editing
capability of cutting and pasting via the Clipboard in your application. To allow the
use of the Clipboard for cutting and pasting text or graphics between your application
and another application or a desk accessory, you need to call the Scrap Manager.

Some generally useful operations such as fixed-point arithmetic, string manipulation,
and logical operations on bits may be performed with the Toolbox Utilities.

The final part of the Toolbox, the Package Manager, lets you use RAM-based software
called packages. The Standard File Package will be called by every application whose
File menu includes the standard commands for saving and opening documents; it presents
the standard user interface for specifying the document. Two of the Macintosh packages
can be seen as extensions to the Toolbox Utilities: The Binary-Decimal Conversion
Package converts integers to decimal strings and vice versa, and the International
Utilities Package gives you access to country-dependent information such as the
formats for numbers, currency, dates, and times.

The Operating System and Other Low-Level Software

The Macintosh Operating System provides the low-level support that applications need
in order to use the Macintosh hardware. As the Toolbox is your program’s interface to
the user, the Operating System is its interface to the Macintosh.

The Memory Manager dynamically allocates and releases memory for use by applications
and by the other parts of the Operating System. Most of the memory that your program
uses is iIn an area called the heap; the code of the program itself occupies space in
the heap. Memory space in the heap must be obtained through the Memory Manager.

The Segment Loader is the part of the Operating System that loads application code
into memory to be executed. Your application can be loaded all at once, or you can
divide it up into dynamically loaded segments to economize on memory usage. The
Segment Loader also serves as a bridge between the Finder and your application,
letting you know whether the application has to open or print a document on the
desktop when it starts up.

Low-level, hardware-related events such as mouse-button presses and keystrokes are
reported by the Operating System Event Manager. (The Toolbox Event Manager then passes
them to the application, along with higher-level, software-generated events added at
the Toolbox level.) Your program will ordinarily deal only with the Toolbox Event
Manager and will rarely call the Operating System Event Manager directly.

File 1/0 is supported by the File Manager, and device 1/0 by the Device Manager. The
task of making the various types of devices present the same interface to the
application is performed by specialized device drivers. The Operating System includes
three built-in drivers:

= The Disk Driver controls data storage and retrieval on 3 1/2-inch disks.

< The Sound Driver controls sound generation, including music composed
of up to four simultaneous tones.

= The Serial Driver reads and writes asynchronous data through the two
serial ports, providing communication between applications and serial
peripheral devices such as a modem or printer.

SpInside Macintosh -- May 1992 -- 12 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

The above drivers are all in ROM; other drivers are RAM-based. There’s a Serial Driver
in RAM as well as the one In ROM, and there’s a Printer Driver in RAM that enables
applications to print information on any variety of printer via the same interface
(called the Printing Manager). The AppleTalk Manager is an interface to a pair of RAM
drivers that enable programs to send and receive information via an AppleTalk network.
More RAM drivers can be added independently or built on the existing drivers (by
calling the routines in those drivers). For example, the Printer Driver was built on
the Serial Driver, and a music driver could be built on the Sound Driver.

The Macintosh video circuitry generates a vertical retrace interrupt 60 times a
second. An application can schedule routines to be executed at regular intervals based
on this “heartbeat” of the system. The Vertical Retrace Manager handles the scheduling
and execution of tasks during the vertical retrace interrupt.

If a fatal system error occurs while your application is running, the System Error
Handler assumes control. The System Error Handler displays a box containing an error
message and provides a mechanism for the user to start up the system again or resume
execution of the application.

The Operating System Utilities perform miscellaneous operations such as getting the
date and time, finding out the user’s preferred speaker volume and other preferences,
and doing simple string comparison. (More sophisticated string comparison routines are
available in the International Utilities Package.)

Finally, there are three Macintosh packages that perform low-level operations:

the Disk Initialization Package, which the Standard File Package calls to initialize
and name disks; the Floating-Point Arithmetic Package, which supports extended-
precision arithmetic according to IEEE Standard 754; and the Transcendental Functions
Package, which contains trigonometric, logarithmic, exponential, and financial
functions, as well as a random number generator.

A SIMPLE EXAMPLE PROGRAM

To illustrate various commonly used parts of the software, this section presents an
extremely simple example of a Macintosh application program. Though too simple to be
practical, this example shows the overall structure that every application program
will have, and it does many of the basic things every application will do. By looking
it over, you can become more familiar with the software and see how your own program
code will be structured.

The example program”s source code is shown at the end of this chapter, which begins at
the end of this section. A lot of comments are included so that you can see which part
of the Toolbox or Operating System is being called and what operation is being
performed. These comments, and those that follow below, may contain terms that are
unfamiliar to you, but for now just read along to get the general idea. All the terms
are explained at length within Inside Macintosh. If you want more information right
away, you can look up the terms in the Glossary or the Index.

The application, called Sample, displays a single, fixed-size window in which the user
can enter and edit text (see Figure 3). It has three menus: the standard Apple menu,
from which desk accessories can be chosen; a File menu, containing only a Quit
command; and an Edit menu, containing the standard editing commands Undo, Cut, Copy,
Paste, and Clear. The Edit menu also includes the standard keyboard equivalents for
Undo, Cut, Copy, and Paste: Command-Z,

X, C, and V, respectively. The Backspace key may be used to delete, and Shift-clicking
will extend or shorten a selection. The user can move the document window around the
desktop by dragging it by its title bar.

ee«Click on the lllustration button, and refer to Figure 3.eee
Figure 3-The Sample Application

The Undo command doesn’t work in the application’s document window, but it and all the

SpInside Macintosh -- May 1992 -- 13 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

other editing commands do work in any desk accessories that allow them
(the Note Pad, for example). Some standard features this simple example doesn’t
support are as follows:

= Text cannot be cut (or copied) and pasted between the document
and a desk accessory.

< The pointer remains an arrow rather than changing to an I-beam
within the document.

= Except for Undo, editing commands aren’t dimmed when they don’t
apply (for example, Cut or Copy when there’s no text selection).

The document window can’t be closed, scrolled, or resized. Because the File menu
contains only a Quit command, the document can’t be saved or printed. Also, the
application doesn’t have “About Sample...” as the first command in its Apple menu, or
a Hide/Show Clipboard command in its Edit menu (for displaying cut or copied text).

In addition to the code shown at the end of this chapter, the Sample application has a
resource file that includes the data listed below. The program uses the numbers in the
second column to identify the resources; for example, it makes a Menu Manager call to
get menu number 128 from the resource file.

Resource Resource ID Description

Menu 128 Menu with the apple symbol as its title
and no commands in it

Menu 129 File menu with one command, Quit, with
keyboard equivalent Command-Q

Menu 130 Edit menu with the commands Undo (dimmed),

Cut, Copy, Paste, and Clear, in that order,
with the standard keyboard equivalents and
with a dividing line between Undo and Cut
Window 128 Document window without a size box;
template top left corner of (50,40) on QuickDraw’s
coordinate plane, bottom right corner of
(300,450); title “Sample”; no close box

Each menu resource also contains a “menu ID” that’s used to identify the menu when the
user chooses a command from it; for all three menus, this ID is the same as the
resource ID.

Note: To create a resource file with the above contents, you can use the
Resource Editor or any similar program that may be available on the
development system you’re using.

The program starts with a USES clause that specifies all the necessary Pascal
interface files. (The names shown are for the Lisa Workshop development system, and
may be different for other systems.) This is followed by declarations of some useful
constants, to make the source code more readable. Then there are a number of variable
declarations, some having simple Pascal data types and others with data types defined
in the interface files (like Rect and WindowPtr). Variables used in the program that
aren’t declared here are global variables defined in the interface to QuickDraw.

The variable declarations are followed by two procedure declarations: SetUpMenus and
DoCommand. You can understand them better after looking at the main program and seeing
where they’re called.

The program begins with a standard initialization sequence. Every application will
need to do this same initialization (in the order shown), or something close to it.

Additional initialization needed by the program follows. This includes setting up the
menus and the menu bar (by calling SetUpMenus) and creating the application’s document
window (reading its description from the resource file and displaying it on the
screen).

The heart of every application program is its main event loop, which repeatedly calls
the Toolbox Event Manager to get events and then responds to them as appropriate. The

SpInside Macintosh -- May 1992 -- 14 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

most common event is a press of the mouse button; depending on where it was pressed,
as reported by the Window Manager, the sample program may execute a command, move the
document window, make the window active, or pass the event on to a desk accessory. The
DoCommand procedure takes care of executing a command; it looks at information
received by the Menu Manager to determine which command to execute.

Besides events resulting directly from user actions such as pressing the mouse button
or a key on the keyboard, events are detected by the Window Manager as a side effect
of those actions. For example, when a window changes from active to inactive or vice
versa, the Window Manager tells the Toolbox Event Manager to report it to the
application program. A similar process happens when all or part of a window needs to
be updated (redrawn). The internal mechanism in each case is invisible to the program,
which simply responds to the event when notified.

The main event loop terminates when the user takes some action to leave the program-in
this case, when the Quit command is chosen.

That’s it! Of course, the program structure and level of detail will get more
complicated as the application becomes more complex, and every actual application will
be more complex than this one. But each will be based on the structure illustrated
here.PROGRAM Sample;

{ Sample -- A small sample application written by Macintosh User }
{ Education. It displays a single, fixed-size window in which the }
{ user can enter and edit text. }

{ The following two compiler commands are required }
{ for the Lisa Workshop. }

{$X-} {turn off automatic stack expansion}

{$U-} {turn off Lisa libraries}

{ The USES clause brings in the units containing the Pascal interfaces. }
{ The $U expression tells the compiler what file to look in for the }
{ specified unit. }

USES {$U Obj/MemTypes } MemTypes, {basic Memory Manager data types}
{$U Obj/QuickDraw} QuickDraw, {interface to QuickDraw}
{$U Obj/0OSIntf 3} OSIntf, {interface to the Operating System}
{$U Obj/ToolIntf } ToolIntf; {interface to the Toolbox}

CONST
applelD = 128; {resource IDs/menu IDs for Apple, File, and Edit menus}
filelD = 129;
editlD = 130;
appleM = 1; {index for each menu in myMenus (array of menu handles)}
fileM = 2;
editM = 3;
menuCount = 3; {total number of menus}
windowlD = 128; {resource ID for application®s window}
undoCommand = I; {menu item numbers identifying commands in Edit menu}
cutCommand = 3;
copyCommand = 4;
pasteCommand = 5;
clearCommand = 6;

VAR
myMenus: ARRAY [I..menuCount] OF MenuHandle; {array of handles to the menus}
dragRect: Rect; {rectangle used to mark boundaries for}

{dragging window}

txRect: Rect; {rectangle for text in application window}
textH: TEHandle; {handle to information about the text}
theChar: CHAR; {character typed on the keyboard or keypad}

SpInside Macintosh -- May 1992 -- 15 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

extended: BOOLEAN;
doneFlag: BOOLEAN;
myEvent: EventRecord;
wRecord: WindowRecord;
myWindow: WindowPtr;
whichWindow: WindowPtr;

PROCEDURE SetUpMenus;

{TRUE if user is Shift-clicking}

{TRUE if user has chosen Quit command}
{information about an event}

{information about the application window}
{pointer to wRecord}

{pointer to window in which mouse button}
{was pressed}

{ Set up menus and menu bar }

VAR

i: INTEGER;

BEGIN

{ Read menu descriptions from resource file into memory and store handles }

{ in myMenus array }

myMenus[appleM] := GetMenu(applelD); {read Apple menu from resource file}
AddResMenu(myMenus[appleM], "DRVR"); {add desk accessory names to}

myMenus[fileM] :
myMenus[editM] :

FOR i = 1 TO menuCount

DrawMenuBar ;
END; {of SetUpMenu}

PROCEDURE DoCommand(mResult:
{ Execute command specified

VAR
theltem: INTEGER; {menu
theMenu: INTEGER; {menu
name: Str255; {desk
temp: INTEGER;

BEGIN
theltem := LoWord(mResul
theMenu := HiWord(mResul

CASE theMenu OF

applelD:
BEGIN

{Apple menu}

GetMenu(filelD); {read File menu from resource file}
GetMenu(editlD); {read Edit menu from resource file}

DO InsertMenu(myMenus[i], 0); {install menus in}
{menu bar }
{and draw menu bar}

LONGINT) ;
by mResult, the result of MenuSelect }

item number from mResult low-order word)
number from mResult high-order word}
accessory name}

t); {call Toolbox Utility routines to set }
t); { menu item number and menu number}

{case on menu 1D}

{call Menu Manager to get desk accessory }

Getltem(myMenus[appleM], theltem, name); { name, and call Desk }

{ Manager to open }

temp := OpenDeskAcc(name); { accessory (OpenDeskAcc

SetPort(myWindow) ;
END; {of applelD}

{ result not used)}
{call QuickDraw to restore application }
{ window as grafPort to draw in (may have }
{ been changed during OpenDeskAccc) }

filelD: doneFlag := TRUE; {quit (main loop repeats until}

editlID:
BEGIN

{doneFlag is TRUE)}

{call Desk Manager to handle editing}
{command if desk accessory window is}

IF NOT SystemEdit(theltem - 1) { the active window}

THEN
CASE theltem OF

cutCommand:
copyCommand:
pasteCommand:

{application window is the active window}
{case on menu item (command) number}

TECut(textH); {call TextEdit to handle command}
TECopy (textH);
TEPaste(textH);

SpInside Macintosh -- May 1992 -- 16 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

clearCommand: TEDelete(textH);

END; {of item case}
END; {of editlD}

END; {of menu case} {to indicate completion of command, call
HiliteMenu(0); { Menu Manager to unhighlight menu title
{ (highlighted by MenuSelect) }

e

END; {of DoCommand}

BEGIN {main program}
{ Initialization }
InitGraf(@thePort); {initialize QuickDraw}
InitFonts; {initialize Font Manager}
FlushEvents(everyEvent, 0); {call 0S Event Manager to discard}
{ any previous events}

InitWindows; {initialize Window Manager}
InitMenus; {initialize Menu Manager}
TEINnit; {initialize TextEdit}
InitDialogs(NIL); {initialize Dialog Manager}
InitCursor; {call QuickDraw to make cursor (pointer)}
{ an arrow}
SetUpMenus; {set up menus and menu bar}
WITH screenBits._bounds DO {call QuickDraw to set dragging boundaries;}

{ ensure at least 4 by 4 pixels will remain}
SetRect(dragRect, 4, 24, right - 4, bottom - 4); { visible}

doneFlag := FALSE; {flag to detect when Quit command is chosen}

myWindow = GetNewWindow(windowlD, @wRecord, POINTER(- 1)); {put up }
{application}
{window}

SetPort(myWindow) ; {call QuickDraw to set current grafPort }

{ to this window rectangle for text in}
t>xRect := thePort”._portRect; { window; call QuickDraw to bring }
InsetRect(txRect, 4, 0); { it in 4 pixels from left and right }

{ edges of window }
textH := TENew(txRect, txRect); {call TextEdit to prepare for }

{ receiving text}

{ Main event loop }
REPEAT {call Desk Manager to perform any periodic) SystemTask;
{ actions defined for desk accessories}
TEldle(textH); {call TextEdit to make vertical bar blink}

IF GetNextEvent(everyEvent, myEvent)
{call Toolbox Event Manager to get the next }

THEN { event that the application should handle}
CASE myEvent.what OF {case on event type}
mouseDown : {mouse button down: call Window Manager}

{ to learn where}
CASE FindWindow(myEvent.where, whichWindow) OF

inSysWindow: {desk accessory window: call Desk Manager}
{to handle it}
SystemClick {myEvent,whichWindow); inMenuBar:
{menu bar: call Menu Manager to learn }
{ which command, then execute it }
DoCommand(MenuSelect(myEvent.where));

inDrag: {title bar: call Window Manager to drag}
DragWindow(whichWindow, myEvent.where, dragRect);
inContent: {body of application window: }
BEGIN { call Window Manager to check whether }

IF whichWindow <> FrontWindow
{ it"s the active window and make it }

SpInside Macintosh -- May 1992 -- 17 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

THEN
SelectWindow(whichWindow) { active if not}
ELSE
BEGIN {it"s already active: call QuickDraw to }

{ convert to window coordinates for }
{ TEClick, use Toolbox Utility BitAnd to}
{ test for shift }

GlobalToLocal (myEvent.where);

extended := BitAnd(myEvent.modifiers, shiftkey) <> O;

TEClick(myEvent._where, extended, textH);
{ key down, and call TextEdit}

END; { to process the event}
END; {of inContent}
END; {of mouseDown}

keyDown, autoKey: {key pressed once or held down to repeat}
BEGIN
theChar := CHR(BitAnd(myEvent.message, charCodeMask));
{get the character}
IF BitAnd(myEvent.modifiers, cmdKey) <> O

THEN {if Command key down, call Menu }
DoCommand(MenuKey(theChar)) { Manager to learn which command,}
ELSE { then execute it; else pass }
TEKey(theChar, textH); { character to TextEdit}
END;
activateEvt:
BEGIN

IF BitAnd(myEvent._modifiers, activeFlag) <> 0 THEN
{application window is becoming active:}
BEGIN { call TextEdit to highlight selection}
TEActivate(textH);
{ or display blinking vertical bar, and call}
Disableltem(myMenus[editM], undoCommand);
{ Menu Manager to disable Undo}

END {(since application doesn"t support Undo)}
ELSE
BEGIN {application window is becoming inactive: }
TEDeactivate(textH);

{ unhighlight selection or remove blinking}
{ vertical bar, and enable Undo (since desk}
{ accessory may support it)}
Enableltem(myMenus[editM], undoCommand);
END;
END; {of activateEvt}

upgggfﬁvt: {window appearance needs updating}

BeginUpdate(WindowPtr(myEvent._message));

{call Window Manager to begin update}
EraseRect(thePort”.portRect);

{Call QuickDraw to erase text area}
TEUpdate(thePort™.portRect, textH);

{call TextEdit to update the text}
EndUpdate (WindowPtr(myEvent.message));

{call Window Manager to end update}

END; {of updateEvt}

END; {of event case}
UNTIL doneFlag;
END.

WHERE TO GO FROM HERE

SpInside Macintosh -- May 1992 -- 18 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

This section contains important directions for every reader of Inside Macintosh. It
will help you figure out which chapters to read next.

The Inside Macintosh chapters are ordered in such a way that you can follow it if you
read through it sequentially. Forward references are given wherever necessary to any
additional information that you’ll need in order to fully understand what’s being
discussed. Special-purpose information that can possibly be skipped is indicated as
such. Most likely you won’t need to read everything in each chapter and can even skip
entire chapters.

You should begin by reading the following chapters:

1. The Macintosh User Interface Guidelines. All Macintosh
applications should follow these guidelines to ensure that the end
user is presented with a consistent, familiar interface.

2. Macintosh Memory Management: An Introduction.

3. Using Assembly Language, if you’re programming in assembly language.
Depending on the debugging tools available on the development
system you’re using, it may also be helpful or necessary for high-level
language programmers to read this chapter. You’ll also have to read it
if you’re creating your own development system and want to know how to
write interfaces to the routines.

4. The chapters describing the parts of the Toolbox that deal with the
fundamental aspects of the user interface: the Resource Manager,
QuickDraw, the Toolbox Event Manager, the Window Manager, and the
Menu Manager .

Read the other chapters if you’re interested in what they discuss, which you should be
able to tell from the overviews in this “road map” and from the introductions to the
chapters themselves. Each chapter’s introduction will also tell you what you should
already know before reading that chapter.

When you’re ready to try something out, refer to the appropriate documentation for the
development system you”ll be using.

END OF FILE 001 A Road Map

SpInside Macintosh -- May 1992 -- 19 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

#H## FILE: 002 Compat

ibility Guidelines

COMPATIBILITY GUIDELINES

About This Chapter
Compatibility

General Guidelines

Memory

Assembly Language

Hardware
Determining the Features of a Machine
Localization

¢Pero, Se Habla Espafiol?

Non-Roman Writing Systems
Applications in a Shared Environment
Summary of Compatability Guidelines

ABOUT THIS CHAPTER

Compatibility is a concern for anyone writing software. For some programmers, it’s a
concern because they want to write software that will run, with little or no
modification, on all versions of the Macintosh. Other programmers want to take
advantage of particular software and hardware features; they need to know where and
when these features are available.

This chapter gives guidelines for making it more likely that your program will run on
different versions, present and future, of the Macintosh. It also gives tips for
writing software that can be easily modified for use in other countries. Finally, it
explains how to determine what features are available on a given machine.

COMPATIBILITY

The key to compatibility is not to depend on things that may change. Inside Macintosh
contains hundreds of warnings where information is likely to change; all of these
warnings can be summarized by a single rule: use global variable names and system
calls, rather than addresses and numeric values.

At the most basic level, all of the software and hardware components of the Macintosh—
each line of ROM code, each RAM memory location, each hardware device—are represented
by numbers. Symbolic names have been defined for virtually every routine, variable,
data structure, memory location, and hardware device that your application will need
to use. Use of these names instead of the actual numbers will simplify the process of
updating your application when the numbers change.

General Guidelines

Any field that’s marked in Inside Macintosh as “not used” should be considered
“reserved by Apple” and usually be left O.

While Inside Macintosh gives the structure of low-level data structures (for instance,
file control blocks, volume control blocks, and system queues), it’s best not to
access or manipulate these structures directly; whenever possible, use the routines
provided for doing this.

SpInside Macintosh -- May 1992 -- 20 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

You shouldn”t rely on system resources being in RAM; on the Macintosh Plus, Macintosh
SE, and Macintosh 11, certain system resources are in ROM. Don’t assume, for example,
that you can regain RAM space by releasing system resources.

A variety of different keyboards are available for the Macintosh; you should always
read ASCII codes rather than key codes.

Don”t count on the alternate (page 2) sound or video buffers. On the Macintosh 11,
you can determine the number of video pages and switch between them; for details, see
the Graphics Devices chapter.

To be compatible with printers connected directly to the Macintosh or via AppleTalk,
use either the Printing Manager or the Printer Driver’s control calls for text-
streaming and bitmap-printing (as documented in Inside

Macintosh). Don’t send ASCII codes directly to the Printer Driver. In general, you
should avoid using printer-specific features and should not access the fields of the
print record directly.

Memory

You shouldn’t depend on either the system or application heap zones starting at
certain addresses. Use the global variable ApplZone to find the application heap and
the variable SysZone to locate the system heap. You should not count on the
application heap zone starting at an address less than 65536; in other words, don’t
expect a system heap that’s smaller than 64K in size.

Space in the system heap is extremely limited. In general, avoid using the system
heap; if you must, allocate only very small objects (about 32 bytes or less). If you
need memory that won’t be reinitialized when your application ends, allocate it with
an "INIT® resource; for details, see the System Resource File chapter.

The high-order byte of a master pointer contains flags used by the Memory Manager. In
the future, all 32 bits of the pointer may be needed, in which case the flags byte
will have to be moved elsewhere. For this reason, you should never set or clear these
flags directly but should instead use the Memory Manager routines HPurge, HNoPurge,
HLock, HUnlock, HSetRBit, HCIrRBit, HGetState, and HSetState.

You should allow for a variety of RAM memory sizes. While 128K, 512K, 1 MB, and 2 MB
are standard sizes, many other RAM configurations are possible.

NIL handles (handles whose value is zero) are common bugs; they typically come from
unsuccessful GetResource calls and often result (eventually) in address errors. The
68020 does not give address errors when accessing data, so be sure to test your code
for NIL handles and null pointers.

Assembly Language

In general, you shouldn’t use 68000 instructions that depend on supervisor mode; these
include instructions that modify the contents of the Status Register (SR).

Programmers typically modify the SR only as a means of changing the Condition Code
Register (CCR) half of the register; an instruction that addresses the CCR directly
will work fine instead. You should also not use the User Stack Pointer or turn
interrupts on and off.

Timing loops that depend on the clock speed of a particular processor will fail when
faster processors are introduced. You can use the Operating System Utility procedure
Delay for timing, or you can check the contents of the global variable Ticks. For
more precise timings, you can use the Time Manager (taking advantage of the VIA
timers). Several global variables also contain useful timing information; they"re
described in the Start Manager chapter.

SpInside Macintosh -- May 1992 -- 21 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

If you wish to handle your own exceptions (thereby relying on the position of data in
the exception’s local stack frame), be aware that exception stack frames vary within
the 68000 family.

In particular, don"t use the TRAP instruction. Also, the TAS instruction, which uses
a special read-modify-write memory cycle, is not supported by the Macintosh SE and
Macintosh 11 hardware.

A memory management unit in the Macintosh 11 may prevent code from writing to
addresses within code segments. Also, the 68020 caches code as it’s encountered.
Your data blocks should be allocated on the stack or in heap blocks separate from the
code, and your code should not modify itself.

Note: You can determine which microprocessor is installed by calling
the SysEnvirons function; it’s described below.

The Floating-Point Arithmetic and Transcendental Functions Packages have been extended
to take advantage of the MC68881 numerics coprocessor; using the routines in these
packages will ensure compatibility on all current and future versions of the
Macintosh. (For details on these packages, see the Floating-Point Arithmetic and
Transcendental Functions Packages chapter.)

Memory locations below the system heap that aren’t documented may not be available for
use in future systems. Also, microprocessors in the 68000 family use the exception
vectors in locations $0 through $FF in different ways. In general, don’t depend on
any global variable that isn’t documented in Inside Macintosh.

Don”t store information in the application parameters area (the 32 bytes between the
application globals and the jump table); this space is reserved for use by Apple.

Don’t depend on the format of the trap dispatch table. Use the Operating System
Utility routines GetTrapAddress and SetTrapAddress to access the trap dispatch table.
You should also not use unassigned entries in the trap table, or any other unused low
memory location.

Inside Macintosh documents the values returned by register-based routines;
don’t depend on return values that aren’t documented here.

Hardware

As a general rule, you should never address hardware directly; whenever possible, use
the routines provided by the various device drivers. The addresses of memory-mapped
hardware (like the VIAl, VIA2, SCC, and IWM) are always subject to change, and direct
access to such hardware may not be possible. For instance, the Macintosh 11 memory-
management unit may prevent access to memory-mapped hardware. If you must access the
hardware directly, get the base address of the device from the appropriate global
variable; see the Macintosh Family Hardware Reference Manual for details.

Warning: Although there’s a global variable that contains the SCSI base
address, you should use the SCSI Manager; this is especially
important with regard to asynchronous operation.

Note: Copy-protection schemes that rely on particular hardware
characteristics are subject to failure when the hardware changes.

You should avoid writing directly to the screen; use QuickDraw whenever possible. IFf
you must write directly to the screen, don’t “hard code” the screen size and location.
The global variable ScreenBits contains a bit map corresponding to the screen being
used. ScreenBits.bounds is the size of the screen, ScreenBits.baseAddr is the start
of the screen, and ScreenBits.rowBytes gives the offset between rows.

Warning: The screen size can exceed 32K; use long word values in screen
calculations. Also, the screen may be more than one pixel in
depth; see the QuickDraw chapter for details.

SpInside Macintosh -- May 1992 -- 22 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

There are many sizes of disks for the Macintosh from Apple, and more from
third-party vendors. Use the Standard File Package and File Manager calls to
determine the number and size of disk drives.

DETERMINING THE FEATURES OF A MACHINE

As the Macintosh family grows, applications need a reliable and comprehensive way of
determining what software and hardware features are available on a given machine.
Although the Operating System Utilities routine Environs indicates the type of machine
and ROM version running, it provides no help in distinguishing between the plethora of
different software feature sets and hardware configurations that an application may
encounter .

A new function, SysEnvirons, provides detailed information about what software
functionality (Color QuickDraw, as an example) is available, as well as what hardware
devices (processors, peripherals, and so on) are installed or connected.

All of the Toolbox Managers must be initialized before calling SysEnvirons.

In addition, the AppleTalk Manager routine MPPOpen must be called if the driver
version information in atDrvrVersNum is desired. SysEnvirons is not intended for use
by device drivers, but can be called from desk accessories. (It does not assume that
register A5 has been properly set up.)

FUNCTION SysEnvirons (versionRegested: INTEGER;
VAR theWorld: SyskEnvRec) : OSErr; [Not in ROM]

ee«Click on the X-Ref button, and refer to Technical Note #129.eee

Trap macro _SysEnvirons

On entry AO: sysEnvRec (pointer)
DO: versRegested (word)

On exit AO: sysEnvRec (pointer)
DO: result code (word)

Result codes noErr No error
envNotPresent SysEnvirons trap not present
envBadVers Nonpositive version number passed

envVersTooBig Requested version of SysEnvirons
call not available

In theWorld, SysEnvirons returns a system environment record describing the features
of the machine. Designed to be extendible, SyskEnvirons will be updated as new
features are added, and the system environment record that’s returned will be
expanded. System File 4.1 contains version 1 of SysEnvirons; subsequent versions will
be incremented by 1.

The system environment record for version 1 of SysEnvirons contains the following
fields:

TYPE SysEnvRec = RECORD
environsVersion: INTEGER;

machineType: INTEGER;
systemVersion: INTEGER;
processor: INTEGER;
hasFPU: BOOLEAN;
hasColorQD: BOOLEAN;
keyBoardType: INTEGER;
atDrvrVersNum: INTEGER;
sysVRefNum: INTEGER
END;

New versions of the call will add fields to this record. To distinguish between

SpInside Macintosh -- May 1992 -- 23 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

different versions of the call, and thereby between the different sizes of records
they return, SysEnvirons returns its version number in the environsVersion field. IFf
you request version 2, for instance, but only version 1 is available, the
environsVersion field will contain the value 1, and the result code envVersTooBig will
be returned. This tells you that only the information for version 1 has been returned
in SysEnvRec.

The MPW 2.0 interface files contain code, or ‘“glue”, for System file versions earlier
than 4.1, as well as for the 64K and the Macintosh XL ROMs. The glue checks for the
existence of the trap at runtime; if the call does not exist, the glue fills in all
fields of the record except systemVersion and returns the result code envNotPresent.

Assembly-language note: As with the MoveHHI procedure, assembly-language
programmers using MPW should link with the glue and
execute

JSR SysEnvirons

If you’re using another development system, refer
to its documentation for details.

The machineType field returns one of the following constants:

CONST envMachUnknown = 0; {new version of Macintosh--not covered }
{ by this version of SysEnvirons}

env512KE =1; {Macintosh 512K enhanced}
envMacPlus = 2; {Macintosh Plus}

envSE = 3; {Macintosh SE}

envMacll = 4; {Macintosh 11}

envMacl Ix = 5; {Macintosh I11Ix}

envMacl Icx = 6; {Macintosh llcx}

envSE30 =7; {Macintosh SE/30}
envPortable = 8; {Macintosh Portable}

envMacl Ici 9; {Macintosh llci}
In addition to these, the glue for SysEnvirons may return one of the following:

CONST envMac
envXxL

-1; {Macintosh with 64K ROM}
-2; {Macintosh XL}

The systemVersion field returns the version number of the System file represented as
two byte-long numbers, separated by a period. (It is not a fixed point number.) For
instance, System 4.1 returns $0410 or 04.10 in this field.

(Applications can use this for compare operations.) If SysEnvirons is called while a
system earlier than System 4.1 is running, the glue will return a $0 in this field,
and the result code envNotPresent will be returned.

The processor field returns one of the following constants:

CONST envCPUUnknown 0; {new processor--not yet covered by this }

{ version of SysEnvirons}

env68000 =1; {MC68000 processor}
env68010 = 2; {MC68010 processor}
env68020 = 3; {MC68020 processor}
env68030 = 4; {MC68030 processor}

The hasFPU field tells whether or not a Motorola MC68881 floating-point coprocessor
unit is present. (This field does not apply to third-party memory-mapped coprocessor
add-ons.)

The hasColorQD field tells whether or not Color QuickDraw is present. It does not
indicate whether or not a color screen is present (high-level QuickDraw calls provide
this information).

The keyboardType field returns one of the following constants:

SpInside Macintosh -- May 1992 -- 24 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

CONST envUnknownKbd 0; {Macintosh Plus keyboard with keypad}

envMacKbd =1; {Macintosh keyboard}

envMacAndPad = 2; {Macintosh keyboard and keypad}
envMacPluskbd = 3; {Macintosh Plus keyboard}
envAExtendKbd = 4; {Apple Extended keyboard}
envStandADBKbd = 5; {Apple Standard keyboard}
envPortADBKbd = 6; {Macintosh Portable keyboard}
envPort1SOADBKbd = 7; {Macintosh Portable keyboard (1SO)}
envStdISOADBKbd = 8; {Apple Standard keyboard (1SO)}
envExtISOADBKbd = 9; {Apple Extended keyboard (1SO)}

If the Apple Desktop Bus™ is in use, this field returns the keyboard type of the
keyboard on which a keystroke was last made.

ATDrvrVersNum returns the version number of AppleTalk, if it’s been loaded
(that is, if MPPOpen has been called); otherwise, O is returned in this field.

SysVRefNum returns the working directory reference number (or volume reference number)
of the directory that contains the currently open System file.

LOCALIZATION

Localization is the process of adapting an application to a specific language and
country. By making localization relatively painless, you ensure that international
markets are available for your product in the future. You also allow English-speaking
users in other countries to buy the U.S. English version of your software and use it
with their native languages.

The key to easy localization is to store the country-dependent information used by
your application as resources (rather than within the application’s code). This means
that text seen by the user can be translated without modifying the code. In addition,
storing this information In resources means that your application can be adapted for a
different country simply by substituting the appropriate resources.

¢Pero, Se Habla Espafiol?

Not all languages have the same rules for punctuation, word order, and alphabetizing.
In Spanish, questions begin with an upside-down question mark. The roles of commas
and periods in numbers are sometimes the reverse of what you may be used to; in many
countries, for instance, the number 3,546.98 is rendered 3.546,98.

Laws and customs vary between countries. The elements of addresses don’t always
appear in the same order. In some countries, the postal zone code precedes the name
of the city, while in other countries the reverse is true. Postal zone codes vary in
length and can contain letters as well as numbers. The rules for amortizing mortgages
and calculating interest rates vary from country to country—even between Canada and
the United States.

Units of measure and standard formats for time and date differ from country to
country. For example, “lines per inch” is meaningless in the metric world-that is,
almost everywhere. In some countries, the 24-hour clock prevails.

Words aren’t the only things that change from country to country. Telephones and
mailboxes, to name just two examples often used in telecommunications programs, don’t
look the same in all parts of the world. Either make your graphics culturally
neutral, or be prepared to create alternate graphics for various cultures.

Mnemonic shortcuts (such as Command-key equivalents for menu items) that are valid in
one language may not be valid in others; be sure all such shortcuts are stored as
resources.

SpInside Macintosh -- May 1992 -- 25 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Keyboards vary from country to country. Keystrokes that are easily performed with one
hand in your own country may require two hands in another. In France and ltaly, for
instance, typing numerals requires pressing the Shift key.

ITf you rely on properties of the ASCII code table or use data compression codes that
assume a certain number of letters in the alphabet, remember that not all alphabets
have the same numbers of characters. Don’t rely on strings having a particular
length; translation will make most strings longer. (As an example, the length of
Apple manuals has been known to increase as much as 30% in translation.) Also, some
languages require two bytes instead of one to store characters.

Non-Roman Writing Systems

The Script Manager contains routines that allow an application to function correctly
with non-Roman scripts (or writing systems). It also contains utility routines for
text processing and parsing, which are useful for applications that do a lot of text
manipulation. General applications don’t need to call Script Manager routines
directly, but can be localized for non-Roman alphabets through such script interface
systems as Apple’s Kanji Interface System and Arabic Interface System. (Scripts and
script interface systems are described in the Script Manager chapter in this volume.)

The International Utilities Package provides routines for sorting, comparing strings,
and specifying currency, measurements, dates, and time. It’s better to use the
routines in this package instead of the Operating System Utility routines (which
aren’t as accurate and can’t be localized).

You should neither change nor depend upon the system font and system font size. Some
non-Roman characters demand higher resolution than Roman characters. On Japanese
versions of the Macintosh, for instance, the system font must allow for 16-by-16 pixel
characters. You can use the global variables SysFontFam and SysFontSize for
determining the system font and system font size.

The Menu Manager uses the system font and the system font size in setting up the
height of the menu bar and menu items. Because the system font size can vary, the
height of the menu bar can also vary. When determining window placement on the
screen, don’t assume that the menu bar height is 20 pixels. Use the global variable
MBarHeight for determining the height of the menu bar.

Avoid using too many menus; translation into other languages almost always widens menu
titles, forcing some far to the right or even off the screen.

Most Roman fonts for the Macintosh have space above all the letters to allow for
diacritical marks as with A or N. If text is drawn using a standard font immediately
below a dark line, for example, it will appear to be separated from the line by at
least one row of blank pixels (for all but a few exceptional characters). Pixels in
some non-Roman fonts, on the other hand, extend to the top of the font rectangle, and
appear to merge with the preceding line. To avoid character display overlap,
applications should leave blank space around text (as in dialog editText or statText
items), or add space between lines of text, as well as before the first line and
after the last line of text.

The choice of script (Roman, Japanese, Arabic, and so on) is determined by the fonts
selected by the user. If an application doesn’t allow the user to change fonts, or
allows the user to select only a global font for the whole document, the user is
restricted in the choice and mix of scripts.

If text must be displayed in either uppercase or lowercase, you should call the Script
Manager Transliterate routine rather than the UprString routine (which doesn’t handle
diacritical marks or non-Roman scripts correctly).

APPLICATIONS IN A SHARED ENVIRONMENT

SpInside Macintosh -- May 1992 -- 26 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

A number of new products create environments in which users can share information.
Network file servers (like AppleShare™), for instance, make it possible for users to
share data, applications, and disk storage space. Multitasking operating systems and
programs like MultiFinder can also be considered shared environments, allowing data to
be shared between applications.

To operate smoothly in a shared environment, you’ll need to be sensitive to issues
like multiple file access, access privileges, and multiple launches. For a complete
discussion of how to operate in shared environments, see the File Manager chapter.

SUMMARY OF COMPATIBILITY GUIDELINES

Data Type

TYPE SysEnvRec = RECORD
environsVersion: [INTEGER;

machineType: INTEGER;
systemVersion: INTEGER;
processor: INTEGER;
hasFPU: BOOLEAN;
hasColorQD: BOOLEAN;
keyBoardType: INTEGER;
atDrvrVersNum: INTEGER;
sysVRefNum: INTEGER
END;

Routine

FUNCTION SysEnvirons (versionRequested: INTEGER;
VAR theWorld: SyskEnvRec) : OSErr; [Not in ROM]

Result Codes

Name Value Meaning
noErr 0 No error
envNotPresent —5500 SysEnvirons trap not present (System File earlier

than version 4.1); glue returns values for all
fields except systemVersion

envBadVers -5501 A nonpositive version number was passed-no
information is returned

envVersTooBig 5502 Requested version of SysEnvirons call was not
available

Assembly-Language Information
Structure of System Environment Record

environsVersion (word)

machineType (word)
systemVersion (word)
processor (word)
hasFPU (byte)
hasColorQD (byte)

keyBoardType (word)
atDrvrVersNum (word)
sysVRefNum (word)
sysEnvRecSize Size of system environment record

SpInside Macintosh -- May 1992 -- 27 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Routine

Trap macro On entry On exit

_SysEnvirons AO: sysEnvRecPtr (ptr) AO: sysEnvRecPtr (ptr)
DO: versRequested (word) DO: result code (word)

Variables

ApplZone Address of application heap zone

MBarHeight Height of menu bar (word)

MemTop Address of end of RAM

ScreenBits Bit map of screen in use (bitMapRec bytes)

SysZone Address of system heap zone

Ticks Current number of ticks since system startup (long)

Further Reference:

File Manager

Script Manager

Technical Note #129, _SysEnvirons: System 6.0 and Beyond

Technical Note #176, Macintosh Memory Configurations

Technical Note #180, MultiFinder Miscellanea

Technical Note #208, Setting and Restoring A5

Technical Note #212, The Joy OfF Being 32-Bit Clean

Technical Note #227, Toolbox Karma

Technical Note #230, Pertinent Information About the Macintosh SE/30
Technical Note #258, Our Checksum Bounced

END OF FILE 002 Compatibility Guidelines

SpInside Macintosh -- May 1992 -- 28 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

FILE: 003 Macintosh User Interface

THE MACINTOSH USER INTERFACE GUIDELINES

About This Chapter
Introduction
Avoiding Modes
Avoiding Program Dependencies
Types of Applications
Using Graphics
Icons
Palettes
Components of the Macintosh System
The Keyboard
Character Keys
Modifier Keys: Shift, Caps Lock, Option, and Command
Control and Escape Keys
Function Keys
Typeahead and Auto-Repeat
Versions of the Keyboard
The Numeric Keypad
Arrow Keys
Appropriate Uses for the Arrow Keys
Moving the Insertion Point With Arrow Keys
Moving the Insertion Point in Empty Documents
Modifier Keys With Arrow Keys
Making a Selection With Arrow Keys
Extending or Shrinking a Selection
Collapsing a Selection
The Mouse
Mouse Actions
Multiple-Clicking
Changing Pointer Shapes
Selecting
Selection by Clicking
Range Selection
Extending a Selection
Making a Discontinuous Selection
Selecting Text
Insertion Point
Selecting Words
Selecting a Range of Text
Graphics Selections
Selections in Arrays
Windows
Multiple Windows
Opening and Closing Windows
The Active Window
Moving a Window
Changing the Size of a Window
Window Zooming
Effects of Dragging and Sizing
Scroll Bars
Automatic Scrolling
Splitting a Window
Panels
Commands
The Menu Bar
Choosing a Menu Command
Appearance of Menu Commands

SpInside Macintosh -- May 1992 -- 29 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Command Groups
Toggled Commands
Special Visual Features
Reserved Command Key Combinations
Standard Menus
The Apple Menu
The File Menu
New
Open
Close
Save
Save As
Revert to Saved
Page Setup
Print
Quit
The Edit Menu
The Clipboard
Undo
Cut
Copy
Paste
Clear
Select All
Show Clipboard
Font-Related Menus
Font Menu
FontSize Menu
Style Menu
Hierarchical Menus
Pop-Up Menus
Scrolling Menu Indicator
Text Editing
Inserting Text
Backspace
Replacing Text
Intelligent Cut and Paste
Editing Fields
Dialogs and Alerts
Controls
Buttons
Check Boxes and Radio Buttons
Dials
Dialogs
Modal Dialog Boxes
Modeless Dialog Boxes
Standard Close Dialog
Close Box Specifications
Alerts
Color
Standard Uses of Color
Color Coding
General Principles of Color Design
Design in Black and White
Limit Color Use
Contrast and Discrimination
Colors on Grays
Colored Text
Beware of Blue
Small Objects
Specific Recommendations
Color the Black Bits Only
Leave Outlines Black
Highlighting and Selection
Menus
Windows

SpInside Macintosh -- May 1992 -- 30 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Dialogs and Alerts
Pointers
Sound
When to Use Sound
Getting Attention
Alerts
Modes
General Guidelines
Don”t Go Overboard
Redundancy
Natural and Unobtrusive
Significant Differences
User Control
Resources
User Testing
Build User Testing Into the Design Process
Test Subjects
Procedures
Do’s and Don’ts of a Friendly User Interface
Bibliography

ABOUT THIS CHAPTER

This chapter describes the Macintosh user interface, for the benefit of people who
want to develop Macintosh applications. More details about many of these features can
be found in the "About" sections of the other chapters of Inside Macintosh (for
example, "About the Window Manager™).

Unlike the rest of Inside Macintosh, this chapter describes applications from the
outside, not the inside. The terminology used is the terminology users are familiar
with, which is not necessarily the same as that used elsewhere in Inside Macintosh.

The Macintosh user interface consists of those features that are generally applicable
to a variety of applications. Not all of the features are found in every application.
In fact, some features are hypothetical, and may not be found in any current
applications.

The best time to familiarize yourself with the user interface is before beginning to
design an application. Good application design on the Macintosh happens when a
developer has absorbed the spirit as well as the details of the user interface.

Before reading this chapter, you should have some experience using one or more
applications, preferably one each of a word processor, spreadsheet or data base, and
graphics application. You should also have read Macintosh, the owner®s guide, or at
least be familiar with the terminology used in that manual.

For more complete information about the Macintosh user interface, see Human Interface
Guidelines: The Apple Desktop Interface (available through APDA). These guidelines
are significantly extended from the guidelines chapter in the original Inside
Macintosh; they include the principles behind the desktop interface used by both the
Macintosh and Apple Ilgs™, as well as specific guidelines for how interface elements
should be used.

For more information about color, see the Color Manager and Color Picker Package
chapters. Some reference works on color in the computer/user interface are listed at
the end of this chapter. For more information about sound and menus, see the Sound
and Menu Manager chapters, respectively.

INTRODUCT ION

The Macintosh is designed to appeal to an audience of nonprogrammers, including people

SpInside Macintosh -- May 1992 -- 31 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

who have previously feared and distrusted computers. To achieve this goal, Macintosh
applications should be easy to learn and to use. To help people feel more comfortable
with the applications, the applications should build on skills that people already
have, not force them to learn new ones. The user should feel in control of the
computer, not the other way around. This is achieved in applications that embody three
qualities: responsiveness, permissiveness, and consistency.

Responsiveness means that the user"s actions tend to have direct results. The user
shoulld be able to accomplish what needs to be done spontaneously and intuitively,
rather than having to think: "Let"s see; to do C, first | have to do A and B and
then.”". For example, with pull-down menus, the user can choose the desired command
directly and instantaneously.

Permissiveness means that the application tends to allow the user to do anything
reasonable. The user, not the system, decides what to do next. Also, error messages
tend to come up infrequently. If the user is constantly subjected to a barrage of
error messages, something is wrong somewhere.

The most important way in which an application is permissive is in avoiding modes.
This idea is so important that it"s dealt with in a separate section,
"Avoiding Modes", below.

The third and most important principle is consistency. Since Macintosh users usually
divide their time among several applications, they would be confused and irritated if
they had to learn a completely new interface for each application. The main purpose of
this chapter is to describe the shared interface ideas of Macintosh applications, so
that developers of new applications can gain leverage from the time spent developing
and testing existing applications.

Consistency is easier to achieve on the Macintosh than on many other computers. This
is because many of the routines used to implement the user interface are supplied in
the Macintosh Operating System and User Interface Toolbox. However, you should be
aware that implementing the user interface guidelines in their full glory often
requires writing additional code that isn"t supplied.

Of course, you shouldn®™t feel that you"re restricted to using existing features. The
Macintosh is a growing system, and new ideas are essential. But the bread-and-butter
features, the kind that every application has, should certainly work the same way so
that the user can easily move back and forth between applications. The best rule to
follow is that if your application has a feature that"s described in these guidelines,
you should implement the feature exactly as the guidelines describe it. It"s better to
do something completely different than to half-agree with the guidelines.

Illustrations of most of the features described in this chapter can be found in
various existing applications. However, there®s probably no one application that
illustrates these guidelines iIn every particular. Although it"s useful and important
for you to get the feeling of the Macintosh user interface by looking at existing
applications, the guidelines in this chapter are the ultimate authority. Wherever an
application disagrees with the guidelines, follow the guidelines.

Avoiding Modes

""But, gentlemen, you overdo the mode."'
— John Dryden, The Assignation, or Love in a Nunnery, 1672

A mode is a part of an application that the user has to formally enter and leave, and
that restricts the operations that can be performed while it"s in effect. Since people
don"t usually operate modally in real life, having to deal with modes in computer
software reinforces the idea that computers are unnatural and unfriendly.

Modes are most confusing when you®re in the wrong one. Being in a mode makes future
actions contingent upon past ones, restricts the behavior of familiar objects and
commands, and may make habitual actions cause unexpected results.

SpInside Macintosh -- May 1992 -- 32 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

It"s tempting to use modes In a Macintosh application, since most existing software
leans on them heavily. If you yield to the temptation too frequently, however, users
will consider spending time with your application a chore rather than a satisfying
experience.

This is not to say that modes are never used in Macintosh applications. Sometimes a
mode is the best way out of a particular problem. Most of these modes fall into one of
the following categories:

= Long-term modes with a procedural basis, such as doing word processing
as opposed to graphics editing. Each application program is a mode in
this sense.

= Short-term "'spring-loaded” modes, in which the user is constantly doing
something to perpetuate the mode. Holding down the mouse button or a key
is the most common example of this kind of mode.

< Alert modes, where the user must rectify an unusual situation before
proceeding. These modes should be kept to a minimum.

Other modes are acceptable if they meet one of the following requirements:

e They emulate a familiar real-life model that is itself modal, like
picking up different-sized paintbrushes in a graphics editor. MacPaint™
and other palette-based applications are examples of this use of modes.

= They change only the attributes of something, and not its behavior,
like the boldface and underline modes of text entry.

= They block most other normal operations of the system to emphasize the
modality, as in error conditions incurable through software ("'There"s
no disk in the disk drive", for example).

If an application uses modes, there must be a clear visual indication of the current
mode, and the indication should be near the object being most affected by the mode. It
should also be very easy to get into or out of the mode (such as by clicking on a
palette symbol).

Avoiding Program Dependencies

Another important general concept to keep in mind is that your application program
should be as country-independent and hardware-independent as possible.

No words that the user sees should be in the program code itself; storing all these
words in resources will make it much easier for the application to be translated to
other languages. Similarly, there®s a mechanism for reading country-dependent
information from resources, such as the currency and date formats, so the application
will automatically work right in countries where those resources have been properly
set up. You should always use mechanisms like this instead of coding such information
directly into your program.

The system software provides many variables and routines whose use will ensure
independence from the version of the Macintosh being used-whether a Macintosh 128K,
512K, XL, or even a future version. Though you may know a more direct way of getting
the information, or a faster way of doing the operation, it"s best to use the system-
provided features that will ensure hardware independence. You should, for example,
access the variable that gives you the current size of the screen rather than use the
numbers that match the screen you®re using. You can also write your program so that it
will print on any printer, regardless of which type of printer happens to be installed
on the Macintosh being used.

TYPES OF APPLICATIONS

Everything on a Macintosh screen is displayed graphically; the Macintosh has no text
mode. Nevertheless, it"s useful to make a distinction among three types of objects

SpInside Macintosh -- May 1992 -- 33 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

that an application deals with: text, graphics, and arrays. Examples of each of these
are shown in Figure 1.

Text can be arranged In a variety of ways on the screen. Some applications, such as
word processors, might consist of nothing but text, while others, such as graphics-
oriented applications, use text almost incidentally. It"s useful to consider all the
text appearing together in a particular context as a block of text. The size of the
block can range from a single field, as in a dialog box, to the whole document, as in
a word processor. Regardless of its size or arrangement, the application sees each
block as a one-dimensional string of characters. Text is edited the same way
regardless of where it appears.

Graphics are pictures, drawn either by the user or by the application. Graphics in a
document tend to consist of discrete objects, which can be selected individually.
Graphics are discussed further below, under "Using Graphics".

ee«Click on the lllustration button, and refer to Figure 1l.eee
Figure 1-Ways of Structuring Information

Arrays are one- or two-dimensional arrangements of fields. If the array is one-
dimensional, it"s called a form; if it"s two-dimensional it"s called a table. Each
field, in turn, contains a collection of information, usually text, but conceivably
graphics. A table can be readily identified on the screen, since it consists of rows
and columns of fields (often called cells), separated by horizontal and vertical
lines. A form is something you fill out, like a credit-card application. The fields in
a form can be arranged in any appropriate way; nevertheless, the application regards
the fields as in a definite linear order.

Each of these three ways of presenting information retains its integrity, regardless
of the context in which it appears. For example, a field In an array can contain text.
When the user is manipulating the field as a whole, the field is treated as part of
the array. When the user wants to change the contents of the field, the contents are
edited in the same way as any other text.

USING GRAPHICS

A key feature of the Macintosh is its high-resolution graphics screen. To use this
screen to its best advantage, Macintosh applications use graphics copiously, even in
places where other applications use text. As much as possible, all commands, features,
and parameters of an application, and all the user"s data, appear as graphic objects
on the screen. Figure 2 shows some of the ways that applications can use graphics to
communicate with the user.

ee<Click on the lllustration button, and refer to Figure 2.eee
Figure 2-Objects on the Screen

Objects, whenever applicable, resemble the familiar material objects whose functions
they emulate. Objects that act like pushbuttons "light up™ when pressed; the Trash
icon looks like a trash can.

Objects are designed to look good on the screen. Predefined graphics patterns can give
objects a shape and texture beyond simple line graphics. Placing a drop-shadow
slightly below and to the right of an object can give it a three-dimensional
appearance.

Generally, when the user clicks on an object, it"s highlighted to distinguish it from
its peers. The most common way to show this highlighting is by inverting the object:
changing black to white and vice versa. In some situations, other forms of
highlighting may be more appropriate. The important thing is that there should always
be some sort of feedback, so that the user knows that the click had an effect.

SpInside Macintosh -- May 1992 -- 34 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

One special aspect of the appearance of a document on the screen is visual fidelity.
This principle is also known as "what you see is what you get'”. It primarily refers to
printing: The version of a document shown on the screen should be as close as possible
to its printed version, taking into account inevitable differences due to different
media.

Icons

A fundamental object in Macintosh software is the icon, a small graphic object that"s
usually symbolic of an operation or of a larger entity such as a document.

Icons can contribute greatly to the clarity and attractiveness of an application. The
use of icons also makes it much easier to translate programs into other languages.
Wherever an explanation or label is needed, consider using an icon instead of text.

Palettes

Some applications use palettes as a quick way for the user to change from one
operation to another. A palette is a collection of small symbols, usually enclosed in
rectangles. A symbol can be an icon, a pattern, a character, or just a drawing, that
stands for an operation. When the user clicks on one of the symbols (or in its
rectangle), it"s distinguished from the other symbols, such as by highlighting, and
the previous symbol goes back to its normal state.

Typically, the symbol that"s selected determines what operations the user can perform.
Selecting a palette symbol puts the user into a mode. This use of modes can be
Justified because changing from one mode to another is almost instantaneous, and the
user can always see at a glance which mode is in effect. Like all modal features,
palettes should be used only when they"re the most natural way to structure an
application.

A palette can either be part of a window (as in MacDraw™), or a separate window (as

in MacPaint). Each system has its disadvantages. If the palette is part of the window,
then parts of the palette might be concealed if the user makes the window smaller. On
the other hand, if it"s not part of the window, then it takes up extra space on the
desktop. If an application supports multiple documents open at the same time, it might
be better to put a separate palette in each window, so that a different palette symbol
can be in effect in each document.

COMPONENTS OF THE MACINTOSH SYSTEM

This section explains the relationship among the principal large-scale components of
the Macintosh system (from an external point of view).

The main vehicle for the interaction of the user and the system is the application.
Only one application is active at a time. When an application is active, it"s in
control of all communications between the user and the system. The application™s menus
are In the menu bar, and the application is in charge of all windows as well as the
desktop.

To the user, the main unit of information is the document. Each document is a unified
collection of information—-a single business letter or spreadsheet or chart. A complex
application, such as a data base, might require several related documents. Some
documents can be processed by more than one application, but each document has a
principal application, which is usually the one that created it. The other
applications that process the document are called secondary applications.

The only way the user can actually see the document (except by printing it) is through
a window. The application puts one or more windows on the screen; each window shows a

SpInside Macintosh -- May 1992 -- 35 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

view of a document or of auxiliary information used in processing the document. The
part of the screen underlying all the windows is called the desktop.

The user returns to the Finder to change applications. When the Finder is active, if
the user opens either an application a document belonging to an application, the
application becomes active and displays the document window.

Internally, applications and documents are both kept in files. However, the user never
sees files as such, so they don"t really enter into the user interface.

THE KEYBOARD

The Macintosh keyboard is used primarily for entering text. Since commands are chosen
from menus or by clicking somewhere on the screen, the keyboard isn®t needed for this
function, although it can be used for alternative ways to enter commands.

The keys on the keyboard are arranged in familiar typewriter fashion. The U.S.
keyboard on the Macintosh 128K and 512K is shown in Figure 3. The Macintosh XL
keyboard looks the same except that the key to the left of the space bar is labeled
with an apple symbol.

ee<Click on the Illustration button, and refer to Figure 3.eee

Figure 3-The Macintosh U.S. Keyboard

The standard keyboard for the Macintosh SE and Macintosh 11 includes a Control key and
an Escape key. The optional extended keyboard has in addition 6 dedicated function
keys, 15 function keys that are user-definable, and 3 LED indicators for key lock
conditions. The Apple Extended Keyboard is shown in Figure 4.

ee<Click on the Illustration button, and refer to Figure 4.eee

Figure 4-The Apple Extended Keyboard

There are two kinds of keys: character keys and modifier keys. A character key sends

characters to the computer; a modifier key alters the meaning of a character key if
it"s held down while the character key is pressed.

Character Keys

Character keys include keys for letters, numbers, and symbols, as well as the space
bar. IT the user presses one of these keys while entering text, the corresponding
character is added to the text. Other keys, such as the Enter, Tab, Return, Backspace,
and Clear keys, are also considered character keys. However, the result of pressing
one of these keys depends on the application and the context.

The Enter key tells the application that the user is through entering information in a
particular area of the document, such as a field in an array. Most applications add
information to a document as soon as the user types or draws it. However, the
application may need to wait until a whole collection of information is available
before processing it. In this case, the user presses the Enter key to signal that the
information is complete.

The Tab key is a signal to proceed: It signals movement to the next item in a
sequence. Tab often implies an Enter operation before the Tab motion is performed.

The Return key is another signal to proceed, but it defines a different type of motion
than Tab. A press of the Return key signals movement to the leftmost field one step
down (Just like a carriage return on a typewriter). Return can also imply an Enter
operation before the Return operation.

SpInside Macintosh -- May 1992 -- 36 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Note: Return and Enter also dismiss dialog and alert boxes
(see "Dialogs and Alerts™).

During entry of text into a document, Tab moves to the next tab stop, Return moves to
the beginning of the next line, and Enter is ignored.

Backspace is used to delete text or graphics. The exact use of Backspace in text is
described in the "Text Editing” section.

The Clear key on the numeric keypad has the same effect as the Clear command in the
Edit menu; that is, it removes the selection from the document without putting it in
the Clipboard. This is also explained in the "Text Editing" section. Because the
keypad is optional equipment on the Macintosh 128K and 512K, no application should
ever require use of the Clear key or any other key on the pad.

Modifier Keys: Shift, Caps Lock, Option, and Command

There are six keys on the keyboard that change the interpretation of keystrokes: two
Shift keys, two Option keys, one Caps Lock key, and one Command key (the key to the
left of the space bar). These keys change the interpretation of keystrokes, and
sometimes mouse actions. When one of these keys is held down, the effect of the other
keys (or the mouse button) may change.

The Shift and Option keys choose among the characters on each character key. Shift
gives the upper character on two-character keys, or the uppercase letter on alphabetic
keys. The Shift key is also used in conjunction with the mouse for extending a
selection; see "Selecting”. Option gives an alternate character set interpretation,
including international characters, special symbols, and so on. Shift and Option can
be used in combination.

Caps Lock latches in the down position when pressed, and releases when pressed again.
When down it gives the uppercase letter on alphabetic keys. The operation of Caps Lock
on alphabetic keys is parallel to that of the Shift key, but the Caps Lock key has no
effect whatsoever on any of the other keys. Caps Lock and Option can be used in
combination on alphabetic keys.

Pressing a character key while holding down the Command key usually tells the
application to interpret the key as a command, not as a character (see
**Commands'™) .

Control and Escape Keys

The Control and Esc (Escape) keys should be used for their standard meanings; neither
shoulld be used as an additional command-key modifier. Since not all keyboards may
have a Control or Esc key, neither should be depended upon.

The main use of the Control key is to generate control characters for terminal
emulation programs. (The Command key is used for this purpose on terminals lacking a
Control key.) A secondary use that also derives from past practice is calling user-
defined functions, or macros. The varying placement of the Control key on different
keyboards means that it should not be used for routine entry, as touch-typists may
find its position inconvenient.

The Esc key has the general meaning “let me out of here”. In certain contexts its
meaning is specific:

= The user can press Esc as a quick way to indicate Cancel in a dialog box.

= The user can press Esc to stop an operation in progress, such as printing.
(Using Esc this way is like pressing Command-period.)

< If an application absolutely requires a series of dialog boxes (a fresh
look at program design usually eliminates such sequences), the user
should be able to use Esc to move backward through the boxes.

SpInside Macintosh -- May 1992 -- 37 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Pressing Esc should never cause the user to back out of an operation that would
require extensive time or work to reenter, and it should never cause the user to lose
valuable information. When the user presses Esc during a lengthy operation, the
application should display a confirmation dialog box to be sure Esc wasn’t pressed
accidentally.

Function Keys

There are two types of function keys: dedicated and user-definable. The user-
definable keys—labeled F1 through Fl5-are not to be defined by an application. F1
through F4 represent Undo, Cut, Copy, and Paste, respectively, in any applications
that use these commands.

The six dedicated function keys are labeled Help, Del, Home, End, Page Up, and Page
Down. These keys are used as follows:

e Help: Pressing the Help key should produce help (it’s equivalent to
pressing Command-?). The sort of help available varies between
applications; if a full, contextual help system is not available,
some sort of useful help screen should be provided.

e Fwd Del: Pressing Fwd Del performs a forward delete: the character
directly to the right of the insertion point is removed, pulling
everything to the right of the removed character toward the insertion
point. The effect is that the insertion point remains stable while
it “vacuums” everything ahead of it.

ITf Fwd Del is pressed when there is a current selection, it has the
same effect as pressing Delete (Backspace) or choosing Clear from the
Edit menu.

e Home: Pressing the Home key is equivalent to moving the scroll boxes
(elevators) all the way to the top of the vertical scroll bar and to
the left end of the horizontal scroll bar.

e End: The flip-side of Home: it’s equivalent to moving the scroll boxes
(elevators) all the way to the bottom of the vertical scroll bar and to
the right end of the horizontal scroll bar.

= Page Up: Equivalent to clicking the mouse pointer in the upper gray
region of the vertical scroll bar.

= Page Down: Equivalent to clicking the mouse pointer in the lower gray
region of the vertical scroll bar.

Notice that the Home, End, Page Up, and Page Down keys have no effect on the insertion
point or on any selected material. These keys change the screen display only, for
three reasons:

< The analogy to scrolling means that the keys behave as users expect.

= Users can easily change the insertion point by clicking in the
Jumped-to window.

= Window-by-window jumping with a moving insertion point can be done by
Command—-arrow key combinations, as described in the “Arrow Keys” section.

Because the keys are visual only, the Page Up and Page Down keys jump relative to the
visible window, not relative to the insertion point.

Typeahead and Auto-Repeat

If the user types when the Macintosh is unable to process the keystrokes immediately,
or types more quickly than the Macintosh can handle, the extra keystrokes are queued,
to be processed later. This queuing is called typeahead. There®s a limit to the number
of keystrokes that can be queued, but the limit is usually not a problem unless the
user types while the application is performing a lengthy operation.

When a character is held down for a certain amount of time, it starts repeating

SpInside Macintosh -- May 1992 -- 38 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

automatically. The user can set the delay and the rate of repetition with the Control
Panel desk accessory. An application can tell whether a series of n keystrokes was
generated by auto-repeat or by pressing the same key n times. It can choose to
disregard keystrokes generated by auto-repeat; this is usually a good idea for menu
commands chosen with the Command key.

Holding down a modifier key has the same effect as pressing it once. However, if the
user holds down a modifier key and a character key at the same time, the effect is the
same as if the user held down the modifier key while pressing the character key
repeatedly.

Auto-repeat does not function during typeahead; it operates only when the application
is ready to accept keyboard input.

Versions of the Keyboard

There are two physical versions of the keyboard: U.S. and international. The
international version has one more key than the U.S. version. The standard layout on
the international version is designed to conform to the International Standards
Organization (1SO) standard; the U.S. key layout mimics that of common American office
typewriters. International keyboards have different labels on the keys in different
countries, but the overall layout is the same.

Note: An illustration of the international keyboard (with Great Britain
key caps) is given in the Toolbox Event Manager chapter.

The Numeric Keypad

An optional numeric keypad can be hooked up between the main unit and the standard
keyboard on a Macintosh 128K or 512K; on the Macintosh XL, the numeric keypad is built
in, next to the keyboard. Figure 5 shows the U.S. keypad. In other countries, the keys
may have different labels.

ee«Click on the lllustration button, and refer to Figure 5.eee
Figure 5-Numeric Keypad

The keypad contains 18 keys, some of which duplicate keys on the main keyboard, and
some of which are unique to the keypad. The application can tell whether the
keystrokes have come from the main keyboard or the numeric keypad. The keys on the
keypad follow the same rules for typeahead and auto-repeat as the keyboard.

Four keys on the keypad are labeled with “field-motion” symbols: small rectangles
with arrows pointing in various directions. Some applications may use these keys to
select objects in the direction indicated by the key; the most likely use for this
feature is in tables. To obtain the characters

(+ * / ,) available on these keys, the user must also hold down the Shift key on the
keyboard.

Since the numeric keypad is optional equipment on the Macintosh 128K and 512K, no
application should require it or any keys available on it in order to perform standard
functions. Specifically, since the Clear key isn’t available on the main keyboard, a
Clear function may be implemented with this key only as the equivalent of the Clear
command in the Edit menu.

ARROW KEYS

The Macintosh Plus keyboard includes four arrow keys: Up Arrow, Down Arrow, Left
Arrow, and Right Arrow.

SpInside Macintosh -- May 1992 -- 39 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

ee«Click on the lllustration button, and refer to Figure 6.eee

Figure 6-Macintosh Plus Arrow Keys

Appropriate Uses for the Arrow Keys

The arrow keys do not replace the mouse. They can be used in addition to the mouse as
a shortcut for moving the insertion point and (under some circumstances) for making
selections. The following rules are the minimum guidelines for the use of arrow keys,
leaving application programmers relatively free to expand on them where things are
left undefined. Extensions necessary for a particular application should be done in
the spirit of the Macintosh user interface.

It’s up to you to decide whether it’s worth the effort to create arrow key shortcuts
for mouse functions. Many users find that remembering a key combination on the order
of Command-Shift—Left Arrow is more trouble than it’s worth and would rather use a
mouse anyway. In other situations, it’s more convenient to use the keyboard. Some
people have difficulty using a mouse and appreciate being able to use the keyboard
instead.

You should make use of the arrow keys only where it’s appropriate to the application.
Applications that deal with text or arrays (word processors, spreadsheets, and data
bases, for example) have an insertion point. This insertion point can always be moved
by the mouse and, with the new keyboard, with the arrow keys as well.

As a general rule, arrow keys are used to move the insertion point and to expand or
shrink selections. Arrow keys are never used to duplicate the function of the scroll
bars or to move the pointer. In a graphics application, the arrow keys should not be
used to move a selected object.

Moving the Insertion Point With Arrow Keys

The Left Arrow and Right Arrow keys move the insertion point one character left and
right, respectively.

Up Arrow and Down Arrow move the insertion point up and down one line, respectively.
The horizontal screen position should be maintained in terms of screen pixels but not
necessarily in terms of characters, because the insertion point moves to the nearest
character boundary on the new line. (Character boundaries seldom line up vertically
when proportional fonts are used.) During successive movements up or down, you should
keep track of the original horizontal screen position; otherwise, accumulated round-
off errors might cause the insertion point to move a significant distance from the
original horizontal position as it moves from line to line.

Moving the Insertion Point in Empty Documents

Various text-editing programs treat empty documents in different ways. Some assume
that an empty document contains no characters, in which case clicking at the bottom of
a blank screen causes the insertion point to appear at the top. In this situation,
Down Arrow cannot move the insertion point into the blank space (because there are no
characters there).

Other applications treat an empty document as a page of space characters, in which
case clicking at the bottom of a blank screen puts the insertion point where the user
clicked and lets the user type characters there, overwriting the spaces. Down Arrow
moves the insertion point straight down through the spaces.

Whichever paradigm you choose for your application, be consistent.

Modifier Keys With Arrow Keys

SpInside Macintosh -- May 1992 -- 40 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Holding down the Command key while pressing an arrow key should move the insertion
point to the appropriate edge of the window. If the insertion point is already at the
edge of the window, the document should be scrolled one windowful in the appropriate
direction and the insertion point should move to the same edge of the new windowful.
Command—Up Arrow moves to the top of the window, Command-Down Arrow to the bottom,
Command-Left Arrow to the left edge, and Command-Right Arrow to the right edge.

The Option key is reserved as a “semantic modifier” key. The application determines
what the semantic units are. For example, in a word processor, where the basic
semantic unit is the character and the next larger unit is the word, Option-Left Arrow
and Option-Right Arrow might move the insertion point to the beginning and end,
respectively, of a word. (Movement of the insertion point by word boundaries should
use the same definition of “word” that the application uses for double clicking.) The
next larger semantic unit could be defined as the sentence, in which case Option—
Left Arrow and Option—Right Arrow would move the insertion point to the beginning or
end of a sentence. In a programming language editor, where the basic semantic unit is
the token and the next larger one might be the line, Option-Left Arrow and Option—
Right Arrow might move the insertion point left and right to the beginning and end of
the line, respectively.

In an application (such as a spreadsheet) that represents itself as an array, the
basic semantic unit would be the cell. Option-Left Arrow would designate the cell to
the left of the currently active cell as the new active cell, and so on. Using
modifier keys with arrow keys doesn’t do anything to the data; Option-Left Arrow just
moves the selection to the next cell to the left.

Though the use of multiple modifier key combinations (such as Command-Option-Left
Arrow) is discouraged, it’s fine to use the Shift key with any one of the other
modifier keys for making a selection (see “Making a Selection With Arrow Keys” below).
Keep in mind that if multiple keys must be pressed simultaneously, they should be
fairly close together—otherwise many people won’t be able to use that combination.

Making a Selection With Arrow Keys

To use arrow keys to make a selection, the user holds down Shift while pressing an
arrow key. Application programs that depend (as TextEdit does) on the numeric keypad
shoulld not use these Shift-arrow key combinations because the ASCII codes for the four
Shift—-arrow key combinations are the same as those for the keypad’s +, *, /, and =
keys. IT the use of Shift-arrow for making selections is more important to your
application than the numeric keypad, the following paragraphs describe how it should
work .

After a Shift—-arrow key combination has been pressed, the insertion point moves and
the range over which it moves becomes selected. If both the Shift key and another
modifier key are held down, the insertion point moves (as defined for the particular
modifier key) and the range over which the insertion point moves becomes selected. For
example, Shift—Left Arrow selects the character to the left of the insertion point,
Command-Shift—Left Arrow selects from the insertion point to the left edge of the
window, and Option-Shift—Left Arrow selects the whole word that contains the character
to the left of the insertion point (Just like double clicking on a word).

A selection made using the mouse is no different from one made using arrow keys. A
selection started with the mouse can be extended using Shift and Left Arrow or Right
Arrow.

The two ends of a selected range have different characteristics and different names.
The place where the insertion point was when selection was started is called the
anchor point. The place to which the insertion point moves to complete the selection
is called the active end. Once selection begins, the anchor point cannot be moved
except by beginning a new selection. To extend or shrink a selection, the user moves
the active end as specified here. As the active end moves, it can cross over the
anchor point.

In a text application, pressing Shift and either Left Arrow or Right Arrow selects a

SpInside Macintosh -- May 1992 -- 41 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

single character. Assuming that Left Arrow key was used, the anchor point of the
selection is on the right side of the selection, the active end on the left. Each
subsequent Shift—Left Arrow adds another character to the left side of the selection.
A Shift-Right Arrow at this point shrinks the selection. Figure 7 summarizes these
actions.

ee<Click on the Illustration button, and refer to Figure 7.eee
Figure 7-Selecting With Shift-Arrow Keys

In a text application, pressing Option-Shift and either Left Arrow or Right Arrow
selects the entire word containing the character to the left of the insertion point.
Assuming Left Arrow was used, the anchor point is at the right end of the word, the
active end at the left. Each subsequent Option-Shift-Left Arrow adds another word to
the left end of the selection, as shown in Figure 8.

ee«Click on the lllustration button, and refer to Figure 8_eee

Figure 8-Selecting With Option-Shift-Arrow Keys

Pressing Command-Shift—Left Arrow selects the area from the insertion point to the
left edge of the window. The anchor point is at the right end of the selection, the

active end is at the left. Each subsequent Command-Shift—Left Arrow moves the document
one windowful left and extends the selection to the left edge of the new window.

Extending or Shrinking a Selection

To use arrow keys to extend or shrink a selection, the user holds down the Shift key
(plus any defined modifiers) while pressing an arrow key. The arrow key moves the
insertion point at the active end of the selection.

Collapsing a Selection

When a block of text is selected, pressing either Left Arrow or Right Arrow deselects
the range. If Left Arrow is pressed, the insertion point is left at the beginning of
the previous selection; if Right Arrow, at the end of the previous selection.

THE MOUSE

The mouse is a small device the size of a deck of playing cards, connected to the
computer by a long, flexible cable. There’s a button on the top of the mouse. The user
holds the mouse and rolls it on a flat, smooth surface. A pointer on the screen
follows the motion of the mouse.

Simply moving the mouse results only in a corresponding movement of the pointer and no
other action. Most actions take place when the user positions the “hot spot” of the
pointer over an object on the screen and presses and releases the mouse button. The
hot spot should be intuitive, like the point of an arrow or the center of a crossbar.

Mouse Actions
The three basic mouse actions are:

= clicking: positioning the pointer with the mouse, and briefly
pressing and releasing the mouse button without moving the mouse

e pressing: positioning the pointer with the mouse, and holding
down the mouse button without moving the mouse

SpInside Macintosh -- May 1992 -- 42 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

= dragging: positioning the pointer with the mouse, holding down
the mouse button, moving the mouse to a new position, and releasing
the button

The system provides “mouse-ahead”; that is, any mouse actions the user performs when
the application isn’t ready to process them are saved in a buffer and can be processed
at the application’s convenience. Alternatively, the application can choose to ignore
saved-up mouse actions, but should do so only to protect the user from possibly
damaging consequences.

Clicking something with the mouse performs an instantaneous action, such as selecting
a location within a document or activating an object.

For certain kinds of objects, pressing on the object has the same effect as clicking
it repeatedly. For example, clicking a scroll arrow causes a document to scroll one
line; pressing on a scroll arrow causes the document to scroll repeatedly until the
mouse button is released or the end of the document is reached.

Dragging can have different effects, depending on what’s under the pointer when the
mouse button is pressed. The uses of dragging include choosing a menu item, selecting
a range of objects, moving an object from one place to another, and shrinking or
expanding an object.

Some objects, especially graphic objects, can be moved by dragging. In this case, the
application attaches a dotted outline of the object to the pointer and moves the
outline as the user moves the pointer. When the user releases the mouse button, the
application redraws the complete object at the new location.

An object being moved can be restricted to certain boundaries, such as the edges of a
window. If the user moves the pointer outside of the boundaries, the application stops
drawing the dotted outline of the object. If the user releases the mouse button while
the pointer is outside of the boundaries, the object isn’t moved. If, on the other
hand, the user moves the pointer back within the boundaries again before releasing the
mouse button, the outline is drawn again.

In general, moving the mouse changes nothing except the location, and possibly the
shape, of the pointer. Pressing the mouse button indicates the intention to do
something, and releasing the button completes the action. Pressing by itself should
have no effect except in well-defined areas, such as scroll arrows, where it has the
same effect as repeated clicking.

Multiple-Clicking

A variant of clicking involves performing a second click shortly after the end of an
initial click. ITf the downstroke of the second click follows the upstroke of the first
by a short amount of time (as set by the user in the Control

Panel), and if the locations of the two clicks are reasonably close together, the two
clicks constitute a double-click. lts most common use is as a faster or easier way to
perform an action that can also be performed in another way. For example, clicking
twice on an icon is a faster way to open it than selecting it and choosing Open;
clicking twice on a word to select it is faster than dragging through it.

To allow the software to distinguish efficiently between single clicks and double-
clicks on objects that respond to both, an operation invoked by double-clicking an
object must be an enhancement, superset, or extension of the feature invoked by
single-clicking that object.

Triple-clicking is also possible; it should similarly represent an extension of a
double-click.

Changing Pointer Shapes

The pointer may change shape to give feedback on the range of activities that make
sense in a particular area of the screen, in a current mode, or both:

SpInside Macintosh -- May 1992 -- 43 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

= The result of any mouse action depends on the item under the pointer
when the mouse button is pressed. To emphasize the differences among
mouse actions, the pointer may assume different appearances in different
areas to indicate the actions possible in each area. This can be
distracting, however, and should be kept to a minimum.

< Where an application uses modes for different functions, the pointer
can be a different shape in each mode. For example, in MacPaint, the
pointer shape always reflects the active palette symbol.

During a particularly lengthy operation, when the user can do nothing but wait until
the operation is completed, the pointer may change to indicate this. The standard
pointer used for this purpose is a wristwatch.

Figure 9 shows some examples of pointers and their effect. An application can design
additional pointers for other contexts.

ee<Click on the lllustration button, and refer to Figure 9.eee

Figure 9-Pointers

SELECTING

The user selects an object to distinguish it from other objects, just before
performing an operation on it. Selecting the object of an operation before identifying
the operation is a fundamental characteristic of the Macintosh user interface, since
it allows the application to avoid modes.

Selecting an object has no effect on the contents of a document. Making a selection
shouldn”t commit the user to anything; there should never be a penalty for making an
incorrect selection. The user fixes an incorrect selection by making the correct
selection.

Although there’s a variety of ways to select objects, they fall into easily
recognizable groups. Users get used to doing specific things to select objects, and
applications that use these methods are therefore easier to learn. Some of these
methods apply to every type of application, and some only to particular types of
applications.

This section discusses first the general methods, and then the specific methods that
apply to text applications, graphics applications, and arrays. Figure 10 shows a
comparison of some of the general methods.

Selection by Clicking

The most straightforward method of selecting an object is by clicking on it once. Most
things that can be selected in Macintosh applications can be selected this way.

ee«Click on the lllustration button, and refer to Figure 10.eee
Figure 10-Selection Methods

Some applications support selection by double-clicking and triple-clicking. As always
with multiple clicks, the second click extends the effect of the first click, and the
third click extends the effect of the second click. In the case of selection, this
means that the second click selects the same sort of thing as the first click, only
more of them. The same holds true for the third click.

For example, in text, the first click selects an insertion point, whereas the second
click selects a whole word. The third click might select a whole block or paragraph of
text. In graphics, the first click selects a single object, and double- and triple-
clicks might select increasingly larger groups of objects.

SpInside Macintosh -- May 1992 -- 44 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Range Selection

The user selects a range of objects by dragging through them. Although the exact
meaning of the selection depends on the type of application, the procedure is always
the same:

1. The user positions the pointer at one corner of the range and presses
the mouse button. This position is called the anchor point of the range.

2. The user moves the pointer in any direction. As the pointer is moved,
visual feedback iIndicates the objects that would be selected if the
mouse button were released. For text and arrays, the selected area is
continually highlighted. For graphics, a dotted rectangle expands or
contracts to show the range that will be selected.

3. When the feedback shows the desired range, the user releases the mouse
button. The point at which the button is released is called the endpoint
of the range.

Extending a Selection

A user can change the extent of an existing selection by holding down the Shift key
and clicking the mouse button. Exactly what happens next depends on the context.

In text or an array, the result of a Shift-click is always a range. The position where
the button is clicked becomes the new endpoint or anchor point of the range; the
selection can be extended in any direction. If the user clicks within the current
range, the new range will be smaller than the old range.

In graphics, a selection is extended by adding objects to it; the added objects do not
have to be adjacent to the objects already selected. The user can add either an
individual object or a range of objects to the selection by holding down the Shift key
before making the additional selection. If the user holds down the Shift key and
selects one or more objects that are already highlighted, the objects are deselected.

Extended selections can be made across the panes of a split window. (See
“Splitting Windows”.)

Making a Discontinuous Selection

In graphics applications, objects aren’t usually considered to be in any particular
sequence. Therefore, the user can use Shift-click to extend a selection by a single
object, even if that object is nowhere near the current selection. When this happens,
the objects between the current selection and the new object are not automatically
included in the selection. This kind of selection is called a discontinuous selection.
In the case of graphics, all selections are discontinuous selections.

This is not the case with arrays and text, however. In these two kinds of
applications, an extended selection made by a Shift-click always includes everything
between the old selection and the new endpoint. To provide the possibility of a
discontinuous selection in these applications, Command-click is included in the user
interface.

To make a discontinuous selection in a text or array application, the user selects the
first piece in the normal way, then holds down the Command key before selecting the
remaining pieces. Each piece is selected in the same way as if it were the whole
selection, but because the Command key is held down, the new pieces are added to the
existing selection instead of supplanting it.

IT one of the pieces selected is already within an existing part of the selection,
then instead of being added to the selection it’s removed from the selection. Figure

SpInside Macintosh -- May 1992 -- 45 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

11 shows a sequence in which several pieces are selected and deselected.

Not all applications support discontinuous selections, and those that do might
restrict the operations that a user can perform on them. For example, a word processor
might allow the user to choose a font after making a discontinuous selection, but not
to choose Cut.

ee«Click on the lllustration button, and refer to Figure 11.eee

Figure 11-Discontinuous Selection

Selecting Text

Text is used in most applications; it’s selected and edited in a consistent way,
regardless of where it appears.

A block of text is a string of characters. A text selection is a substring of this
string, which can have any length from zero characters to the whole block. Each of the
text selection methods selects a different kind of substring. Figure 12 shows
different kinds of text selections.

e=<Click on the lllustration button, and refer to Figure 12.eee

Figure 12-Text Selections

Insertion Point

The insertion point is a zero-length text selection. The user establishes the location
of the insertion point by clicking between two characters. The insertion point then
appears at the nearest character boundary. I the user clicks to the right of the last
character on a line, the insertion point appears immediately after the last character.
The converse is true if the user clicks to the left of the first character in the
line.

The insertion point shows where text will be inserted when the user begins typing, or
where cut or copied data (the contents of the Clipboard) will be pasted. After each
character is typed, the insertion point is relocated to the right of the insertion.

If, between the mouse-down and the mouse-up, the user moves the pointer more than
about half the width of a character, the selection is a range selection rather than an
insertion point.

Selecting Words

The user selects a whole word by double-clicking somewhere within that word. If the
user begins a double-click sequence, but then drags the mouse between the mouse-down
and the mouse-up of the second click, the selection becomes a range of words rather
than a single word. As the pointer moves, the application highlights or unhighlights a
whole word at a time.

A word, or range of words, can also be selected in the same way as any other range;
whether this type of selection is treated as a range of characters or as a range of
words depends on the operation. For example, in MacWrite, a range of individual
characters that happens to coincide with a range of words is treated like characters
for purposes of extending a selection, but is treated like words for purposes of
“intelligent” cut and paste (described later in the “Text Editing” section).

A word is defined as any continuous string that contains only the following
characters:

SpInside Macintosh -- May 1992 -- 46 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

letter (including letters with diacritical marks)

digit

nonbreaking space (Option-space)

dollar sign, cent sign, English pound symbol, or yen symbol
percent sign

comma between digits

period before a digit

an apostrophe between letters or digits

a hyphen, but not a minus sign (Option-hyphen) or a dash
(Option-Shift-hyphen)

LoD D

This is the definition in the United States and Canada; in other countries, it would
have to be changed to reflect local formats for numbers, dates, and currency.

If the user double-clicks over any character not on the list above, that character is
selected, but it is not considered a word.

Examples of words:
$123,456.78
shouldn’t
3 1/2 [with a nonbreaking space]
5%

Examples of nonwords:

7/10/6
blue cheese [with a breaking space]
“Yoicks!” [the quotation marks and exclamation point

aren’t part of the word]

Selecting a Range of Text

The user selects a range of text by dragging through the range. A range is either a
range of words or a range of individual characters, as described under “Selecting
Words™, above.

If the user extends the range, the way the range is extended depends on what kind of
range it is. ITf it’s a range of individual characters, it can be extended one
character at a time. If it’s a range of words (including a single word), it’s extended
only by whole words.

Graphics Selections

There are several different ways to select graphic objects and to show selection
feedback in existing Macintosh applications. MacDraw, MacPaint, and the Finder all
illustrate different possibilities. This section describes the MacDraw paradigm, which
is the most extensible to other kinds of applications.

A MacDraw document is a collection of individual graphic objects. To select one of
these objects, the user clicks once on the object, which is then shown with knobs.
(The knobs are used to stretch or shrink the object, and won’t be discussed in these
guidelines.) Figure 13 shows some examples of selection.

ee«Click on the lllustration button, and refer to Figure 13._eee

Figure 13-Graphics Selections

To select more than one object, the user can select either a range or a multiple
selection. A range selection includes every object completely contained within the

dotted rectangle that encloses the range, while an extended selection includes only
those objects explicitly selected.

SpInside Macintosh -- May 1992 -- 47 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Selections in Arrays

As described above under “Types of Applications”, an array is a one- or two-
dimensional arrangement of fields. If the array is one-dimensional, it’s called a
form; i1f it’s two-dimensional, 1t’s called a table. The user can select one or more
fields, or part of the contents of a field.

To select a single field, the user clicks in the field. The user can also implicitly
select a field by moving into it with the Tab or Return key.

The Tab key cycles through the fields in an order determined by the application. From
each field, the Tab key selects the “next” field. Typically, the sequence of fields is
first from left to right, and then from top to bottom. When the last field in a form
is selected, pressing the Tab key selects the first field in the form. In a form, an
application might prefer to select the fields in logical, rather than physical, order.

The Return key selects the first field in the next row. IT the idea of rows doesn’t
make sense in a particular context, then the Return key should have the same effect as
the Tab key.

Tables are more likely than forms to support range selections and extended selections.
A table can also support selection of rows and columns. The most convenient way for
the user to select a column is to click in the column header. To select more than one
column, the user drags through several column headers. The same applies to rows.

To select part of the contents of a field, the user must first select the field. The
user then clicks again to select the desired part of the field. Since the contents of
a field are either text or graphics, this type of selection follows the rules outlined
above. Figure 14 shows some selections in an array.

ee«Click on the Illustration button, and refer to Figure 14_eee

Figure 14-Array Selections

WINDOWS

The rectangles on the desktop that display information are windows. The most commmon
types of windows are document windows, desk accessories, dialog boxes, and alert
boxes. (Dialog and alert boxes are discussed under “Dialogs and Alerts”.) Some of the
features described in this section are applicable only to document windows. Figure 15
shows a typical active document window and some of its components.

ee«Click on the Illustration button, and refer to Figure 15.eee

Figure 15-An Active Window

Multiple Windows

Some applications may be able to keep several windows on the desktop at the same time.
Each window is in a different plane. Windows can be moved around on the Macintosh’s
desktop much like pieces of paper can be moved around on a real desktop. Each window
can overlap those behind it, and can be overlapped by those in front of it. Even when
windows don’t overlap, they retain their front-to-back ordering.

Different windows can represent separate documents being viewed or edited
simultaneously, or related parts of a logical whole, like the listing, execution, and
debugging of a program. Each application may deal with the meaning and creation of
multiple windows in its own way.

SpInside Macintosh -- May 1992 -- 48 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

The advantage of multiple windows is that the user can isolate unrelated chunks of
information from each other. The disadvantage is that the desktop can become
cluttered, especially if some of the windows can’t be moved. Figure 16 shows multiple
windows.

ee<Click on the Illustration button, and refer to Figure 16.eee

Figure 16-Multiple Windows

Opening and Closing Windows

Windows come up onto the screen in different ways as appropriate to the purpose of the
window. The application controls at least the initial size and placement of its
windows.

Most windows have a close box that, when clicked, makes the window go away. The
application in control of the window determines what’s done with the window visually
and logically when the close box is clicked. Visually, the window can either shrink to
a smaller object such as an icon, or leave no trace behind when it closes. Logically,
the information in the window is either retained and then restored when the window is
reopened (which is the usual case), or else the window is reinitialized each time it’s
opened. When a document is closed, the user is given the choice whether to save any
changes made to the document since the last time it was saved.

If an application doesn’t support closing a window with a close box, it
shouldn’t include a close box on the window.

The Active Window

Of all the windows that are open on the desktop, the user can work in only one window
at a time. This window is called the active window. All other open windows are
inactive. To make a window active, the user clicks in it. Making a window active has
two immediate conseguences:

= The window changes its appearance: Its title bar is highlighted
and the scroll bars and size box are shown. 1T the window is being
reactivated, the selection that was in effect when it was deactivated
is rehighlighted.

e The window is moved to the frontmost plane, so that it’s shown in
front of any windows that it overlaps.

Clicking In a window does nothing except activate it. To make a selection in the
window, the user must click again. When the user clicks in a window that has been
deactivated, the window should be reinstated just the way it was when it was
deactivated, with the same position of the scroll box, and the same selection
highlighted.

When a window becomes inactive, all the visual changes that took place when it was
activated are reversed. The title bar becomes unhighlighted, the scroll bars and size
box aren’t shown, and no selection is shown in the window.

Moving a Window

Each application initially places windows on the screen wherever it wants them. The
user can move a window—to make more room on the desktop or to uncover a window it’s
overlapping —by dragging it by its title bar. As soon as the user presses in the title
bar, that window becomes the active window. A dotted outline of the window follows the
pointer until the user releases the mouse button. At the release of the button the
full window is drawn in its new location. Moving a window doesn’t affect the

SpInside Macintosh -- May 1992 -- 49 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

appearance of the document within the window.

If the user holds down the Command key while moving the window, the window
isn’t made active; it moves in the same plane.

The application should ensure that a window can never be moved completely off the
screen.

Changing the Size of a Window

If a window has a size box In its bottom right corner, where the scroll bars come
together, the user can change the size of the window—enlarging or reducing it to the
desired size.

Dragging the size box attaches a dotted outline of the window to the pointer. The
outline’s top left corner stays fixed, while the bottom right corner follows the
pointer. When the mouse button is released, the entire window is redrawn in the shape
of the dotted outline.

Moving windows and sizing them go hand in hand. If a window can be moved, but not
sized, then the user ends up constantly moving windows on and off the screen. The
reason for this is that if the user moves the window off the right or bottom edge of
the screen, the scroll bars are the first thing to disappear. To scroll the window,
the user must move the window back onto the screen again. If, on the other hand, the
window can be resized, then the user can change its size instead of moving it off the
screen, and will still be able to scroll.

Sizing a window doesn’t change the position of the top left corner of the window over
the document or the appearance of the part of the view that’s still showing; it
changes only how much of the view is visible inside the window. One exception to this
rule Is a command such as Reduce to Fit in MacDraw, which changes the scaling of the
view to fit the size of the window. If, after choosing this command, the user resizes
the window, the application changes the scaling of the view.

The application can define a minimum window size. Any attempt to shrink the window
below this size is ignored.

Window Zooming

The more open documents on a desktop, the more difficult it is for the user to locate,
select, and resize the one to be worked on. The 128K ROM includes a feature, known as
window zooming, that allows users—with a single mouse click—to toggle the active
window between its standard size and location and a predefined size and location.

The initial size and placement of a window is known as its standard state. The
application program can supply values for the standard state; otherwise the full
screen (minus a few border pixels) is assumed (see Figure 17). The standard state
should be the most useful size and location for normal operations within the program-
usually it’s the full screen.

e=«Click on the Illustration button, and refer to Figure 17.eee
Figure 17-Window in Standard State

The user cannot change the standard state, but the application can change it within
context. For example, a word processor might define a size that’s wide enough to
display a document whose width is as specified in Page Setup. If the user invokes Page
Setup to specify a wider or narrower document, the application might then change the
standard state to reflect that change.

Your application can also supply initial values for the second window state, known as
the user state. If you don’t supply initial values, the user state is identical to the

SpInside Macintosh -- May 1992 -- 50 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

standard state until the user moves or resizes the window. When the standard state and
user state are different (Figure 18 shows a hypothetical user state), clicking in the
zoom-window box acts as a toggle between the two states.

ee«Click on the lllustration button, and refer to Figure 18._eee
Figure 18-Window in User State

Application developers are encouraged to take advantage of the zoom-window feature;
details on using this feature are provided in the Window Manager chapter. You should
not change the shape of the zoom-window box or change the interpretation of clicking
on the the zoom-window box (shown in Figure 19). You should add no other elements to
the title bar. Except in the zoom-window box and in the close box, clicking within the
title bar should have no effect.

ee<Click on the Illustration button, and refer to Figure 19.eee
Figure 19-Zoom-Window Box Details
Effects of Dragging and Sizing

Explicit dragging or resizing of the window is handled in the normal way, regardless
of the presence or absence of the zoom-window feature. The effect of dragging or
resizing depends on the state of the window and the degree of movement. A change,
either in position or size, of seven pixels or less is insignificant. A change of more
than seven pixels is a “significant change”.

If dragging or resizing occur when the window is in the standard state, a small change
in the size or location of the window does not change the state, nor does it change
the application-defined values for the size and location of the standard state. It
does, of course, change the size or location of the window. A significant change in
the size or location of the window switches the window to the user state and sets the
values for the size and location of that state to those of the window.

If dragging or resizing occur when the window is in the user state, a change in size
or location that leaves the window within seven pixels of the size and location
specified as the standard state changes the state to the standard state, leaving the
size and location of the user state unchanged. Any other change in size or location in
the user state leaves the window in the user state and sets the values for the size
and location of that state to those of the window.

Scroll Bars

Scroll bars are used to change which part of a document view is shown in a window.
Only the active window can be scrolled.

A scroll bar (see Figure 15) is a light gray shaft, capped on each end with square
boxes labeled with arrows; inside the shaft is a white rectangle. The shaft represents
one dimension of the entire document; the white rectangle

(called the scroll box) represents the location of the portion of the document
currently visible inside the window. As the user moves the document under the window,
the position of the rectangle in the scroll bar moves correspondingly. If the document
is no larger than the window, the scroll bars are inactive (the scrolling apparatus
isn’t shown in them). If the document window is inactive, the scroll bars aren’t shown
at all.

There are three ways to move the document under the window: by sequential scrolling,
by “paging” windowful by windowful through the document, and by directly positioning
the scroll box.

Clicking a scroll arrow lets the user see more of the document in the direction of the
scroll arrow, so it moves the document in the opposite direction from the arrow. For
example, when the user clicks the top scroll arrow, the document moves down, bringing
the view closer to the top of the document. The scroll box moves towards the arrow

SpInside Macintosh -- May 1992 -- 51 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

being clicked.

Each click in a scroll arrow causes movement a distance of one unit in the chosen
direction, with the unit of distance being appropriate to the application: one line
for a word processor, one row or column for a spreadsheet, and so on. Within a
document, units should always be the same size, for smooth scrolling. Pressing the
scroll arrow causes continuous movement in its direction.

Clicking the mouse anywhere in the gray area of the scroll bar advances the document
by windowfuls. The scroll box, and the document view, move toward the place where the
user clicked. Clicking below the scroll box, for example, brings the user the next
windowful towards the bottom of the document. Pressing in the gray area keeps
windowfuls flipping by until the user releases the mouse button, or until the location
of the scroll box catches up to the location of the pointer. Each windowful is the
height or width of the window, minus one unit overlap (where a unit is the distance
the view scrolls when the scroll arrow is clicked once).

In both the above schemes, the user moves the document incrementally until it’s in the
proper position under the window; as the document moves, the scroll box moves
accordingly. The user can also move the document directly to any position simply by
moving the scroll box to the corresponding position in the scroll bar. To move the
scroll box, the user drags it along the scroll bar; an outline of the scroll box
follows the pointer. When the mouse button is released, the scroll box jumps to the
position last held by the outline, and the document jumps to the position
corresponding to the new position of the scroll box.

If the user starts dragging the scroll box, and then moves the pointer a certain
distance outside the scroll bar, the scroll box detaches itself from the pointer and
stops following it; if the user releases the mouse button, the scroll box stays in its
original position and the document remains unmoved. But if the user still holds the
mouse button and drags the pointer back into the scroll bar, the scroll box reattaches
itself to the pointer and can be dragged as usual.

If a document has a fixed size, and the user scrolls to the right or bottom edge of
the document, the application displays a gray background between the edge of the
document and the window frame.

Automatic Scrolling

There are several instances when the application, rather than the user, scrolls the
document. These instances involve some potentially sticky problems about how to
position the document within the window after scrolling.

The First case is when the user moves the pointer out of the window while selecting by
dragging. The window keeps up with the selection by scrolling automatically in the
direction the pointer has been moved. The rate of scrolling is the same as if the user
were pressing on the corresponding scroll arrow or arrows.

The second case is when the selection isn’t currently showing in the window, and the
user performs an operation on it. When this happens, it’s usually because the user has
scrolled the document after making a selection. In this case, the application scrolls
the window so that the selection is showing before performing the operation.

The third case is when the application performs an operation whose side effect is to
make a new selection. An example is a search operation, after which the object of the
search is selected. If this object isn’t showing in the window, the application must
scroll the document so as to show it.

The second and third cases present the same problem: Where should the selection be
positioned within the window after scrolling? The primary rule is that the application
should avoid unnecessary scrolling; users prefer to retain control over the
positioning of a document. The following guidelines should be helpful:

e |If part of the new selection is already showing in the window, don’t

SpInside Macintosh -- May 1992 -- 52 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

scroll at all. An exception to this rule is when the part of the
selection that isn’t showing is more important than the part that is
showing.

e If scrolling in one orientation (horizontal or vertical) is sufficient
to reveal the selection, don’t scroll in both orientations.

= If the selection is smaller than the window, position the selection so
that some of its context is showing on each side. It’s better to put
the selection somewhere near the middle of the window than right up
against the corner.

= Even if the selection is too large to show in the window, it might be
preferable to show some context rather than to try to fit as much as
possible of the selection in the window.

Splitting a Window

Sometimes it’s desirable to be able to see disjoint parts of a document
simultaneously. Applications that accommodate such a capability allow the window to be
split into independently scrollable panes.

Applications that support splitting a window into panes place split bars at the top of
the vertical scroll bar and to the left of the horizontal one. Pressing a split bar
attaches it to the pointer. Dragging the split bar positions it anywhere along the
scroll bar; releasing the mouse button moves the split bar to a new position, splits
the window at that location, and divides the appropriate scroll bar into separate
scroll bars for each pane. Figure 20 shows the ways a window can be split.

ee«Click on the lllustration button, and refer to Figure 20.ee-
Figure 20-Types of Split Windows

After a split, the document appears the same, except for the split line lying across
it. But there are now separate scroll bars for each pane. The panes are still scrolled
together in the orientation of the split, but can be scrolled independently in the
other orientation. For example, if the split is vertical, then vertical scrolling
(using the scroll bar along the right of the window) is still synchronous; horizontal
scrolling is controlled separately for each pane, using the two scroll bars along the
bottom of the window. This is shown in Figure 21.

ee«Click on the lllustration button, and refer to Figure 21._eee

Figure 21-Scrolling a Split Window

To remove a split, the user drags the split bar to either end of the scroll bar.

The number of views in a document doesn’t alter the number of selections per
document: that is, one. The selection appears highlighted in all views that show it.
If the application has to scroll automatically to show the selection, the pane that

should be scrolled is the last one that the user clicked in. If the selection is
already showing in one of the panes, no automatic scrolling takes place.

Panels

If a document window is more or less permanently divided into different areas, each of
which has different content, these areas are called panels. Unlike panes, which show
different parts of the same document but are functionally identical, panels are
functionally different from each other but might show different interpretations of the
same part of the document. For example, one panel might show a graphic version of the
document while another panel shows a textual version.

Panels can behave much like windows; they can have scroll bars, and can even be split
into more than one pane. An example of a panel with scroll bars is the list of files
in the Open command’s dialog box.

SpInside Macintosh -- May 1992 -- 53 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Whether to use panels instead of separate windows is up to the application. Multiple
panels in the same window are more compact than separate windows, but they have to be
moved, opened, and closed as a unit.

COMMANDS

Once information that’s to be operated on has been selected, a command to operate on
the information can be chosen from lists of commands called menus.

Macintosh’s pull-down menus have the advantage that they’re not visible until the user
wants to see them; at the same time they’re easy for the user to see and choose items
from.

Most commands either do something, in which case they’re verbs or verb phrases, or
else they specify an attribute of an object, in which case they’re adjectives. They
usually apply to the current selection, although some commands apply to the whole
document or window.

When you’re designing your application, don’t assume that everything has to be done
through menu commands. Sometimes it’s more appropriate for an operation to take place
as a result of direct user manipulation of a graphic object on the screen, such as a
control or icon. Alternatively, a single command can execute complicated instructions
if it brings up a dialog box for the user to fill in.

The Menu Bar

The menu bar is displayed at the top of the screen. It contains a number of words and
phrases: These are the titles of the menus associated with the current application.
Each application has its own menu bar. The names of the menus do not change, except
when the user accesses a desk accessory that uses different menus.

Only menu titles appear in the menu bar. IFf all of the commands in a menu are
currently disabled (that is, the user can’t choose them), the menu title should be
dimmed (drawn in gray). The user can pull down the menu to see the commands, but can’t
choose any of them.

Choosing a Menu Command

To choose a command, the user positions the pointer over the menu title and presses
the mouse button. The application highlights the title and displays the menu, as shown
in Figure 22.

While holding down the mouse button, the user moves the pointer down the menu. As the
pointer moves to each command, the command is highlighted. The command that’s
highlighted when the user releases the mouse button is chosen. As soon as the mouse
button is released, the command blinks briefly, the menu disappears, and the command
is executed. (The user can set the number of times the command blinks in the Control
Panel desk accessory.) The menu title in the menu bar remains highlighted until the
command has completed execution.

Nothing actually happens until the user chooses the command; the user can look at any
of the menus without making a commitment to do anything.

The most frequently used commands should be at the top of a menu; research shows that
the easiest item for the user to choose is the second item from the top. The most
dangerous commands should be at the bottom of the menu, preferably isolated from the
frequently used commands.

SpInside Macintosh -- May 1992 -- 54 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

ee«Click on the Illustration button, and refer to Figure 22_eee

Figure 22—-Menu

Appearance of Menu Commands

The commands in a particular menu should be logically related to the title of the
menu. In addition to command names, three features of menus help the user understand
what each command does: command groups, toggles, and special visual features.

Command Groups

As mentioned above, menu commands can be divided into two kinds: verbs and
adjectives, or actions and attributes. An important difference between the two kinds
of commands is that an attribute stays in effect until it’s canceled, while an action
ceases to be relevant after it has been performed. Each of these two kinds can be
grouped within a menu. Groups are separated by dotted lines, which are implemented as
disabled commands.

The most basic reason to group commands is to break up a menu so It’s easier to read.
Commands grouped for this reason are logically related, but independent. Commands that
are actions are usually grouped this way, such as Cut, Copy, Paste, and Clear in the
Edit menu.

Attribute commands that are interdependent are grouped to show this interdependence.
Two kinds of attribute command groups are mutually exclusive groups and accumulating
groups.

In a mutually exclusive attribute group, only one command in the group is in effect at
any time. The command that’s in effect is preceded by a check mark. If the user
chooses a different command in the group, the check mark is moved to the new command.
An example is the Font menu in MacWrite; no more than one font can be in effect at a
time.

In an accumulating attribute group, any number of attributes can be in effect at the
same time. One special command in the group cancels all the other commands. An example
is the Style menu in MacWrite: The user can choose any combination of Bold, Italic,
Underline, Outline, or Shadow, but Plain Text cancels all the other commands.

Toggled Commands

Another way to show the presence or absence of an attribute is by a toggled command.
In this case, the attribute has two states, and a single command allows the user to
toggle between the states. For example, when rulers are showing in MacWrite, a command
in the Format menu reads “Hide Rulers”. If the user chooses this command, the rulers
are hidden, and the command is changed to read “Show Rulers”. This kind of group
should be used only when the wording of the commands makes it obvious that they’re
opposites.

Special Visual Features

In addition to the command names and how they’re grouped, several other features of
commands communicate information to the user:

= A check mark indicates whether an at tribute command is currently
in effect.

e An ellipsis (...) after a conmand name means that choosing that
command brings up a dialog box. The command isn’t actually executed
until the user has finished filling in the dialog box and has clicked
the OK button or its equivalent.

= The application dims a command when the user can’t choose it. If the
user moves the pointer over a dimmed item, it isn’t highlighted.

e If a conmand can be chosen from the keyboard, it’s followed by the
Command key symbol and the character used to choose it. To choose a

SpInside Macintosh -- May 1992 -- 55 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

command this way, the user holds down the Command key and then presses
the character key.

Reserved Command Key Combinations

There are several menu items, particularly in the File and Edit menus, that commonly
have keyboard equivalents. For consistency, several of those keyboard equivalents
should be used only for the commands listed below and should never be used for any
other purpose. Desk accessories, which are accessible from all applications, assume
that these Command-key combinations have the meanings listed here.

File Menu

Command-N (New)
Command-O (Open)
Command-S (Save)
Command-Q (Quit)

Note: The keyboard equivalent for the Quit command is useful in case
there’s a mouse malfunction, so the user will still be able to
leave the application in an orderly way (with the opportunity
to save any changes to documents that haven’t yet been saved).

Edit Menu

Command-Z (Undo)
Command-X (Cut)

Command-C (Copy)
Command-V (Paste)

The keyboard equivalents in the Style menu (listed below) are less strictly reserved.
Applications that have Style menus shouldn’t use these keyboard equivalents for any
other purpose, but applications that have no Style menus can use them for other
purposes if needed. Remember that you risk confusing users if a given key combination
means different things in different applications.

Style Menu

Command-P (Plain)
Command-B (Bold)
Command-1 (lItalic)
Command-U (Underline)

One keyboard command doesn’t have a menu equivalent:

Character Command
Period (.) Stop current operation

Several other menu features are also supported:

e A command can be shown in Bold, ltalic, Outline, Underline,
or Shadow character style.

e A command can be preceded by an icon.

= The application can draw its own type of menu. An example of
this is the Fill menu in MacDraw.

STANDARD MENUS

One of the strongest ways In which Macintosh applications can take advantage of the
consistency of the user interface is by using standard menus. The operations
controlled by these menus occur so frequently that it saves considerable time for

SpInside Macintosh -- May 1992 -- 56 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

users if they always match exactly. Three of these menus, the Apple, File, and Edit
menus, appear in almost every application. The Font, FontSize, and Style menus affect
the appearance of text, and appear only in applications where they’re relevant.

The Menu Manager now supports two new capabilities: hierarchical and pop-up menus. In
addition, scrolling menus, introduced with the Macintosh Plus and Macintosh 512K
Enhanced, are made visible with a scrolling menu indicator.

The Apple Menu

Macintosh doesn"t allow two applications to be running at once. Desk accessories,
however, are mini-applications that are available while using any application.

At any time the user can issue a command to call up one of several desk accessories;
the available accessories are listed in the Apple menu, as shown in Figure 23.

Accessories are disk-based: Only those accessories on an available disk can be used.
The list of accessories is expanded or reduced according to what’s available. More
than one accessory can be on the desktop at a time.

ee«Click on the lllustration button, and refer to Figure 23._eee

Figure 23-Apple Menu

The Apple menu also contains the “About xxx’’ menu item, where “xxx” is the name of the
application. Choosing this item brings up a dialog box with the name and copyright

information for the application, as well as any other information the application
wants to display.

The File Menu

The File menu lets the user perform certain simple filing operations without leaving
the application and returning to the Finder. It also contains the commands for
printing and for leaving the application. The standard File menu includes the commands
shown in Figure 24. All of these commands are described below.

ee«Click on the lllustration button, and refer to Figure 24_eee

Figure 24-File Menu

New

New opens a new, untitled document. The user names the document the first time it’s
saved. The New command is disabled when the maximum number of documents allowed by the
application is already open; however, an application that allows only one document to
be open at a time may make an exception to this, as described below for Open.

Open

Open opens an existing document. To select the document, the user is presented with a
dialog box (Figure 25). This dialog box shows a list of all the documents, on the disk
whose name is displayed, that can be handled by the current application. The user can
scroll this list forward and backward. The dialog box also gives the user the chance
to look at documents on another disk, or to eject a disk.

ee<Click on the lllustration button, and refer to Figure 25.eee

Figure 25-Open Dialog Box

Using the Open command, the user can only open a document that can be processed by the

current application. Opening a document that can only be processed by a different
application requires leaving the application and returning to the Finder.

SpInside Macintosh -- May 1992 -- 57 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

The Open command is disabled when the maximum number of documents allowed by the
application is already open. An application that allows only one document to be open
at a time may make an exception to this, by first closing the open document before
opening the new document. In this case, if the user has changed the open document
since the last time it was saved, an alert box is presented as when an explicit Close
command is given (see below); then the Open dialog box appears. Clicking Cancel in
either the Close alert box or the Open dialog box cancels the entire operation.

Close

Close closes the active window, which may be a document window, a desk accessory, or
any other type of window. If it’s a document window and the user has changed the
document since the last time it was saved, the command presents an alert box giving
the user the opportunity to save the changes.

Clicking in the close box of a window is the same as choosing Close.

Save

Save makes permanent any changes to the active document since the last time it was
saved. It leaves the document open.

If the user chooses Save for a new document that hasn’t been named yet, the
application presents the Save As dialog box (see below) to name the document, and then
continues with the save. The active document remains active.

If there’s not enough room on the disk to save the document, the application asks if
the user wants to save the document on another disk. If the answer is yes, the
application goes through the Save As dialog to find out which disk.

Save As

Save As saves a copy of the active document under a Ffile name provided by the user.

If the document already has a name, Save As closes the old version of the document,
creates a copy with the new name, and displays the copy in the window.

If the document is untitled, Save As saves the original document under the specified
name. The active document remains active.

Revert to Saved

Revert to Saved returns the active document to the state it was in the last time it
was saved. Before doing so, it puts up an alert box to confirm that this is what the
user wants.

Page Setup

Page Setup lets the user specify printing parameters such as the paper size and
printing orientation. These parameters remain with the document.

Print

Print lets the user specify various parameters such as print quality and number of
copies, and then prints the document. The parameters apply only to the current
printing operation.

Quit

Quit leaves the application and returns to the Finder. If any open documents have been

changed since the last time they were saved, the application presents the same alert
box as for Close, once for each document.

SpInside Macintosh -- May 1992 -- 58 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

The Edit Menu

The Edit menu contains the commands that delete, move, and copy objects, as well as
commands such as Undo, Select All, and Show Clipboard. This section also discusses the
Clipboard, which is controlled by the Edit menu commands. Text editing methods that
don’t use menu commands are discussed under “Text Editing”.

IT the application supports desk accessories, the order of commands in the Edit menu
should be exactly as shown here. This is because, by default, the application passes
the numbers, not the names, of the menu commands to the desk accessories. (For
details, see the Desk Manager chapter) In particular, your application must provide an
Undo command for the benefit of the desk accessories, even if it doesn’t support the
command (in which case it can disable the command until a desk accessory is opened).

The standard order of commands in the Edit menu is shown in Figure 26.
ee«Click on the lllustration button, and refer to Figure 26.ee
Figure 26-Edit Menu

The Clipboard

The Clipboard holds whatever is cut or copied from a document. Its contents stay
intact when the user changes documents, opens a desk accessory, or leaves the
application. An application can show the contents of the Clipboard in a window, and
can choose whether to have the Clipboard window open or closed when the application
starts up.

The Clipboard window looks like a document window, with a close box but usually
without scroll bars or a size box. The user can see its contents but cannot edit them.
In most other ways the Clipboard window behaves just like any other window.

Every time the user performs a Cut or Copy on the current selection, a copy of the
selection replaces the previous contents of the Clipboard. The previous contents are
kept around in case the user chooses Undo.

There’s only one Clipboard, which is present for all applications that support Cut,
Copy, and Paste. The user can see the Clipboard window by choosing Show Clipboard from
the Edit menu. If the window is already showing, it’s hidden by choosing Hide
Clipboard. (Show Clipboard and Hide Clipboard are a single toggled command.)

Because the contents of the Clipboard remain unchanged when applications begin and
end, or when the user opens a desk accessory, the Clipboard can be used for
transferring data among mutually compatible applications and desk accessories.

Undo

Undo reverses the effect of the previous operation. Not all operations can be undone;
the definition of an undoable operation is somewhat application-dependent. The general
rule iIs that operations that change the contents of the document are undoable, and
operations that don’t are not. Most menu items are undoable, and so are typing
sequences.

A typing sequence is any sequence of characters typed from the keyboard or numeric
keypad, including Backspace, Return, and Tab, but not including keyboard equivalents
of commands.

Operations that aren’t undoable include selecting, scrolling, and splitting the window
or changing its size or location. None of these operations interrupts a typing
sequence. For example, if the user types a few characters and then scrolls the
document, the Undo command still undoes the typing. Whenever the location affected by
the Undo operation isn’t currently showing on the screen, the application should
scroll the document so the user can see the effect of the Undo.

An application should also allow the user to undo any operations that are initiated
directly on the screen, without a menu command. This includes operations controlled by

SpInside Macintosh -- May 1992 -- 59 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

setting dials, clicking check boxes, and so on, as well as drawing graphic objects
with the mouse.

The actual wording of the Undo command as it appears in the Edit menu is “Undo xxx’,
where xxx is the name of the last operation. If the last operation isn’t a menu
command, use some suitable term after the word Undo. If the last operation can’t be
undone, the command reads “Undo”, but is disabled.

If the last operation was Undo, the menu command is “Redo xxx’, where xxx is the
operation that was undone. I this command is chosen, the Undo is undone.

Cut

The user chooses Cut either to delete the current selection or to move it. A move is
eventually completed by choosing Paste.

When the user chooses Cut, the application removes the current selection from the
document and puts it in the Clipboard, replacing the Clipboard’s previous contents.
The place where the selection used to be becomes the new selection; the visual
implications of this vary among applications. For example, in text, the new selection
is an insertion point, while in an array, it’s an empty but highlighted cell. If the
user chooses Paste immediately after choosing Cut, the document should be just as it
was before the cut.

Copy

Copy is the first stage of a copy operation. Copy puts a copy of the selection in the
Clipboard, but the selection also remains in the document. The user completes the copy
operation by choosing Paste.

Paste

Paste is the last stage of a move or copy operation. It pastes the contents of the
Clipboard into the document, replacing the current selection. The user can choose
Paste several times in a row to paste multiple copies. After a paste, the new
selection is the object that was pasted, except in text, where it’s an insertion point
immediately after the pasted text. The Clipboard remains unchanged.

Clear

When the user chooses Clear, or presses the Clear key on the numeric keypad, the
application removes the selection, but doesn’t put it in the Clipboard. The new
selection is the same as it would be after a Cut.

Select All

Select All selects every object in the document.

Show Clipboard

Show Clipboard is a toggled command. When the Clipboard isn’t displayed, the command

is “Show Clipboard”. If the user chooses this command, the Clipboard is displayed and
the command changes to ‘“Hide Clipboard”.

Font-Related Menus

Three standard menus affect the appearance of text: Font, which determines the font
of a text selection; FontSize, which determines the size of the characters; and Style,
which determines aspects of iIts appearance such as boldface, italics, and so on.

A font is a set of typographical characters created with a consistent design. Things
that relate characters in a font include the thickness of vertical and horizontal
lines, the degree and position of curves and swirls, and the use of serifs. A font has
the same general appearance, regardless of the size of the characters. Most Macintosh

SpInside Macintosh -- May 1992 -- 60 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

fonts are proportional rather than fixed-width; an application can’t make assumptions
about exactly how many characters will fit in a given area when these fonts are used.

Font Menu

The Font menu always lists the fonts that are currently available. Figure 27 shows a
Font menu with some of the most common fonts.

e=<Click on the lllustration button, and refer to Figure 27.eee

Figure 27-Font Menu

FontSize Menu

Font sizes are measured in points; a point is about 1/72 of an inch. Each font is
available in predefined sizes. The numbers of these sizes for each font are shown
outlined in the FontSize menu. The font can also be scaled to other sizes, but it may
not look as good. Figure 28 shows a FontSize menu with the standard font sizes.
ee«Click on the lllustration button, and refer to Figure 28._eee

Figure 28-FontSize Menu

If there’s insufficient room in the menu bar for the word FontSize, it can be
abbreviated to Size. If there’s insufficient room for both a Font menu and a Size
menu, the sizes can be put at the end of the Font or Style menu.

Style Menu

The commands in the standard Style menu are Plain Text, Bold, Italic, Underline,
Outline, and Shadow. All the commands except Plain Text are accumulating attributes;
the user can choose any combination. A command that’s in effect for the current
selection is preceded by a check mark. Plain Text cancels all the other choices.
Figure 29 shows these styles.

e=<Click on the lllustration button, and refer to Figure 29.eee

Figure 29-Style
Menu

Hierarchical Menus

Hierarchical menus are a logical extension of the current menu metaphor: another
dimension is added to a menu, so that a menu item can be the title of a submenu. When
the user drags the pointer through a hierarchical menu item, a submenu appears after a
brief delay.

Hierarchical menu items have an indicator (a small black triangle pointing to the
right, to indicate “more’) at the edge of the menu, as illustrated in Figure 30.

e=<Click on the lllustration button, and refer to Figure 30.ee~
Figure 30-Main Menu Before and After Submenu Appears

One main menu can contain both standard menu items and submenus; both levels can have
Command-key equivalents. (The submenu title can’t have a Command-key equivalent, of
course, because it’s not a command. Key combinations aren’t used to pull down menus.)

Two delay values enable submenus to function smoothly, without jarring distractions to
the user: The submenu delay is the length of time before a submenu appears as the user
drags the pointer through a hierarchical menu item. It prevents flashing due to rapid
appearance—disappearance of submenus. The drag delay allows the user to drag
diagonally from the submenu title into the submenu, briefly crossing part of the main
menu, without the submenu disappearing (which would ordinarily happen when the pointer
was dragged into another main menu item). See Figure 31.

SpInside Macintosh -- May 1992 -- 61 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

ee«Click on the Illustration button, and refer to Figure 3l.eee
Figure 31-Dragging Diagonally to a Submenu ltem

Other aspects of submenus—menu blink for example-behave exactly the same way as iIn
standard menus.

The original Macintosh menus were designed so that the user could drag the mouse
across the menu bar and immediately see all of the choices currently available.
Although developers have found they need more menu space, and hierarchical menus were
designed to meet that need, it’s important that this original capability be maintained
as much as possible. To keep this essential simplicity and clarity, follow these
guidelines:

= Hierarchical menus should be used only for lists of related items,
such as fonts or font sizes (in this case, the title of the submenu
clearly tells what the submenu contains).

= Only one level of hierarchical menu should be used, although the
capability for more is provided. This one extra layer of menus
potentially increases by an order of magnitude the number of menu
items that can be used; if you need more layers than that, your
application is probably more complex than most users can understand,
and you should rethink your design.

Pop-Up Menus

A pop-up menu is one that isn’t in the menu bar, but appears somewhere else on the
screen (usually in a dialog) when the user presses in a particular place, as shown in
Figure 32.

e=<Click on the lllustration button, and refer to Figure 32.eee
Figure 32-Dialog Box With Pop-Up Menus

Pop-up menus are used for setting values or choosing from lists of related items. The
indication that there is a pop-up menu is a box with a one-pixel thick drop shadow,
drawn around the current value. When the user presses this box, the pop-up menu
appears, with the current value—checked and highlighted-under the pointer, as shown in
Figure 33. If the menu has a title, the title is highlighted while the menu is
visible.

ee«Click on the lllustration button, and refer to Figure 33.eee
Figure 33-Dragging Through a Pop-up Menu

The pop-up menu acts like other menus: the user can move around in it and choose
another item, which then appears in the box, or can move outside it to leave the
current value active. If a pop-up menu reaches the top or bottom of the screen, it
scrolls like other menus.

When designing an application that uses pop-up menus, keep in mind the following
points:

= Pop-up menus should only be used for lists of values or related items
(much like hierarchical menus); they should not be used for commands.

= You must draw the shadowed box indicating that there is a pop-up menu,
so the user knows that it’s there—pop-up menus should never be invisible.

= While the menu is showing, its title should be inverted. If several
pop-up menus are near each other, this lessens ambiguity about which
one is being used.

= The current value should always appear under the pointer when the
menu pops up, so that simply clicking the box doesn’t change the item.

= Hierarchical pop-up menus should not be used.

Splnside Macintosh -- May 1992 -- 62 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Always consider whether a pop-up menu is the simplest thing to use in each case. For
example, rather than have a pop-up menu choose all paper sizes, icons could represent
commonly used sizes, with a pop-up menu for non-standard sizes.

Scrolling Menu Indicator

Scrolling menus were introduced with the Macintosh Plus and Macintosh 512K Enhanced,
but this feature was invisible. When there were more than eighteen items in a menu
(which can happen with fonts on a hard disk), the menu scrolled to show more items as
the user moved the pointer past the last item; but users didn’t know whether there
were any more items in a menu unless they happened to drag past the bottom of it. The
scrolling menu feature is now made visible by an indicator (similar to the
hierarchical menu indicator), which appears at the bottom of the menu when there are
more items, as shown in Figure 34.

e=<Click on the lllustration button, and refer to Figure 34.eee
Figure 34-Scrolling Menus: Indicator at Bottom

The indicator area itself doesn’t highlight, but the menu scrolls as the user drags
over it. When the last item is shown, the indicator disappears.

As soon as the menu starts scrolling, another indicator appears at the top of the menu
to show that some items are now hidden in that direction (see
Figure 35).

ee«Click on the lllustration button, and refer to Figure 35.eee

Figure 35-Scrolling Menus: Indicator at Top

If the user drags back up to the top, the menu scrolls back down in the same manner.
IT the user releases the mouse button or selects another menu, and then selects the

menu again, It appears in its original position, with the hidden items and the
indicator at the bottom.

TEXT EDITING

In addition to the operations described under “The Edit Menu” above, there are other
ways to edit text that don’t use menu items.

Inserting Text

To insert text, the user selects an insertion point by clicking where the text is to
go, and then starts typing it. As the user types, the application continually moves
the insertion point to the right of each new character.

Applications with multiline text blocks should support word wraparound; that is, no
word should be broken between lines. The definition of a word is given under
“Selecting Words” above.

Backspace
When the user presses the Backspace key, one of two things happens:
= If the current selection is one or more characters, it’s deleted.

= If the current selection is an insertion point, the previous
character is deleted.

SpInside Macintosh -- May 1992 -- 63 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

In either case, the insertion point replaces the deleted characters in the document.
The deleted characters don’t go into the Clipboard, but the deletion can be undone by
immediately choosing Undo.

Replacing Text

If the user starts typing when the selection is one or more characters, the characters
that are typed replace the selection. The deleted characters don’t go into the
Clipboard, but the replacement can be undone by immediately choosing Undo.

Intelligent Cut and Paste

An application that lets the user select a word by double-clicking should also see to
it that the user doesn’t regret using this feature. The only way to do this is by
providing “intelligent” cut and paste.

To understand why this feature is necessary, consider the following sequence of events
in an application that doesn’t provide it:

1. A sentence in the user’s document reads:
Returns are only accepted if the merchandise is damaged.
The user wants to change this to:
Returns are accepted only if the merchandise is damaged.-

2. The user selects the word “only” by double-clicking. The letters are
highlighted, but not either of the adjacent spaces.

3. The user chooses Cut, clicks just before the word “if’, and chooses Paste.
4. The sentence now reads:
Returns are accepted onlyif the merchandise is damaged.-

To correct the sentence, the user has to remove a space between “are”
and “accepted”, and add one between “only” and “if”’. At this point he
or she may be wondering why the Macintosh is supposed to be easier to
use than other computers.

If an application supports intelligent cut and paste, the rules to follow are:

< If the user selects a word or a range of words, highlight the selection,
but not any adjacent spaces.

< When the user chooses Cut, if the character to the left of the selection
is a space, discard it. Otherwise, if the character to the right of the
selection is a space, discard it.

= When the user chooses Paste, if the character to the left or right of the
current selection is part of a word, insert a space before pasting.

If the left or right end of a text selection is a word, follow these rules at that
end, regardless of whether there’s a word at the other end.

This feature makes more sense if the application supports the full definition of a
word (as detailed above under “Selecting Words’), rather than the definition of a word
as anything between two spaces.

These rules apply to any selection that’s one or more whole words, whether it was
chosen with a double click or as a range selection.

SpInside Macintosh -- May 1992 -- 64 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Figure 36 shows some examples of intelligent cut and paste.
e=<Click on the lllustration button, and refer to Figure 36.ee

Figure 36-Intelligent Cut and Paste

Editing Fields

If an application isn’t primarily a text application, but does use text in fields
(such as in a dialog box), it may not be able to provide the full text editing
capabilities described so far. It’s important, however, that whatever editing
capabilities the application provides under these circumstances be upward-compatible
with the full text editing capabilities. The following list shows the capabilities
that can be provided, from the minimal to the most sophisticated:

The user can select the whole field and type in a new value.

The user can backspace.

The user can select a substring of the field and replace it.

The user can select a word by double-clicking.

The user can choose Undo, Cut, Copy, Paste, and Clear, as described
above under “The Edit Menu”. In the most sophisticated version, the
application implements intelligent cut and paste.

An application should also perform appropriate edit checks. For example, if the only
legitimate value for a field is a string of digits, the application might issue an
alert if the user typed any nondigits. Alternatively, the application could wait until
the user is through typing before checking the validity of the field’s contents. In
this case, the appropriate time to check the field is when the user clicks anywhere
other than within the field.

DIALOGS AND ALERTS

The “select-then-choose” paradigm is sufficient whenever operations are simple and act
on only one object. But occasionally a command will require more than one object, or
will need additional parameters before it can be executed. And sometimes a command
won’t be able to carry out its normal function, or will be unsure of the user’s real
intent. For these special circumstances the Macintosh user interface includes two
additional features:

= dialogs, to allow the user to provide additional information before
a command is executed
< alerts, to notify the user whenever an unusual situation occurs

Since both of these features lean heavily on controls, controls are described in this
section, even though controls are also used in other places.

Controls

Friendly systems act by direct cause-and-effect; they do what they’re told. Performing
actions on a system in an indirect fashion reduces the sense of direct manipulation.
To give Macintosh users the feeling that they’re in control of their machines, many of
an application’s features are implemented with controls: graphic objects that, when
manipulated with the mouse, cause instant action with visible results. Controls can
also change settings to modify future actions.

There are four main types of controls: buttons, check boxes, radio buttons, and dials
(see Figure 37). You can also design your own controls, such as a ruler on which tabs
can be set.

SpInside Macintosh -- May 1992 -- 65 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

ee«Click on the Illustration button, and refer to Figure 37.eee
Figure 37-Controls
Buttons

Buttons are small objects labeled with text. Clicking or pressing a button performs
the action described by the button’s label.

Buttons usually perform instantaneous actions, such as completing operations defined
by a dialog box or acknowledging error messages. They can also perform continuous
actions, in which case the effect of pressing on the button would be the same as the
effect of clicking it repeatedly.

Two particular buttons, OK and Cancel, are especially important in dialogs and alerts;
they’re discussed under those headings below.

Check Boxes and Radio Buttons

Whereas buttons perform instantaneous or continuous actions, check boxes and radio
buttons let the user choose among alternative values for a parameter.

Check boxes act like toggle switches; they’re used to indicate the state of a
parameter that must be either off or on. The parameter is on if the box is checked,
otherwise it’s off. The check boxes appearing together in a given context are
independent of each other; any number of them can be off or on.

Radio buttons typically occur in groups; they’re round and are filled in with a black
circle when on. They’re called radio buttons because they act like the buttons on a
car radio. At any given time, exactly one button in the group is on. Clicking one
button in a group turns off the button that’s currently on.

Both check boxes and radio buttons are accompanied by text that identifies what each
button does.

Dials

Dials display the value, magnitude, or position of something in the application or
system, and optionally allow the user to alter that value. Dials are predominantly
analog devices, displaying their values graphically and allowing the user to change
the value by dragging an indicator; dials may also have a digital display.

The most common example of a dial is the scroll bar. The indicator of the scroll bar
is the scroll box; it represents the position of the window over the length of the
document. The user can drag the scroll box to change that position. (See “Scroll Bars”
above.)

Dialogs

Commands In menus normally act on only one object. If a command needs more information
before it can be performed, it presents a dialog box to gather the additional
information from the user. The user can tell which commands bring up dialog boxes
because they’re followed by an ellipsis (...) iIn the menu.

A dialog box is a rectangle that may contain text, controls, and icons. There should
be some text in the box that indicates which command brought up the dialog box.

The user sets controls and text fields in the dialog box to provide the needed
information. When the application puts up the dialog box, it should set the controls
to some default setting and fill in the text fields with default values, if possible.
One of the text fields (the “first” field) should be highlighted, so that the user can
change its value just by typing in the new value. 1T all the text fields are blank,
there should be an insertion point in the First field.

SpInside Macintosh -- May 1992 -- 66 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Editing text fields in a dialog box should conform to the guidelines detailed above
under “Text Editing”.

When the user is through editing an item:

= Pressing Tab accepts the changes made to the item, and selects the
next item in sequence.

< Clicking in another item accepts the changes made to the previous
item and selects the newly clicked item.

Dialog boxes are either modal or modeless, as described below.
Modal Dialog Boxes

A modal dialog box is one that the user must explicitly dismiss before doing anything
else, such as making a selection outside the dialog box or choosing a command. Figure
38 shows a modal dialog box.

ee<Click on the Illustration button, and refer to Figure 38.eee
Figure 38-A Modal Dialog Box

Because it restricts the user’s freedom of action, this type of dialog box should be
used sparingly. In particular, the user can’t choose a menu item while a modal dialog
box is up, and therefore can only do the simplest kinds of text editing. For these
reasons, the main use of a modal dialog box is when

it’s important for the user to complete an operation before doing anything else.

A modal dialog box usually has at least two buttons: OK and Cancel. OK dismisses the
dialog box and performs the original command according to the information provided; it
can be given a more descriptive name than “OK”. Cancel dismisses the dialog box and
cancels the original command; it should always be called “Cancel”.

A dialog box can have other kinds of buttons as well; these may or may not dismiss the
dialog box. One of the buttons in the dialog box may be outlined boldly. The outlined
button is the default button; if no button is outlined, then the OK button is the
default button. The default button should be the safest button in the current
situation. Pressing the Return or Enter key has the same effect as clicking the
default button. If there’s no default button, Return and Enter have no effect.

A special type of modal dialog box is one with no buttons. This type of box just
informs the user of a situation without eliciting any response. Usually, it would
describe the progress of an ongoing operation. Since it has no buttons, the user has
no way to dismiss it. Therefore, the application must leave it up long enough for the
user to read it before taking it down.

Modeless Dialog Boxes

A modeless dialog box allows the user to perform other operations without dismissing
the dialog box. Figure 39 shows a modeless dialog box.

A modeless dialog box is dismissed by clicking in the close box or by choosing Close
when the dialog is active. The dialog box is also dismissed implicitly when the user
chooses Quit. It’s usually a good idea for the application to remember the contents of
the dialog box after it’s dismissed, so that when it’s opened again, It can be
restored exactly as it was.

ee«Click on the Illustration button, and refer to Figure 39.eee

Figure 39-A Modeless Dialog Box

Controls work the same way in modeless dialog boxes as in modal dialog boxes, except
that buttons never dismiss the dialog box. In this context, the OK button means “go

ahead and perform the operation, but leave the dialog box up”, while Cancel usually
terminates an ongoing operation.

SpInside Macintosh -- May 1992 -- 67 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

A modeless dialog box can also have text fields; since the user can choose menu
commands, the full range of editing capabilities can be made available.

Standard Close Dialog

When a user chooses Close or Quit from the File menu, and the active document has been
changed, the Close dialog box appears, asking “Save changes before closing?” A great
deal of work can be lost if a user mistakenly clicks the “No” button instead of
“Cancel”. This is especially important to MultiFinder users, who often move from one
application to another and become less aware of subtle differences between
applications. To avoid confusion, all applications should use the same standard Close
dialog. As shown in Figure 40, dialogs can have multiple lines of text.

ee«Click on the lllustration button, and refer to Figure 40.ee
Figure 40-A Standard Close Dialog
Close Box Specifications

“Yes” and “No”, the two direct responses to the question ‘“Save changes before
closing?” are placed together on the left side of the box. “Yes”, the default button,
is boldly outlined. “Cancel”, which cancels the close command, is to the right,
separate from “Yes” and “No”.

After the user selects Close from the File menu, the text of the question in the Close
box is generally “Save changes before closing?” However, if the user sees this dialog
after choosing “Quit”, the text would instead be “Save changes before quitting?” If
the application supports multiple windows, the text could be “Save changes to
[document name] before closing window?” The box should always look the same and appear
in the same place on the screen.

The box itself is 120 pixels high by 238 pixels wide. Its standard location is
(100,120)(220,358) but other locations may be appropriate.

Here are the other coordinates for the standard close box (assuming standard
location):

the text (12,20)(45,223)
the word “yes” (58,25)(76,99)
the word “no” (86,25)(104,99)
the word ““cancel” (86,141)(104,215)

If you must devise a close box different from the one described here, maintain the
general arrangement of the buttons and remember that the user’s safest choice should
be the default button and that the most dangerous choice should be the most difficult
to make happen.

Alerts

Every user of every application is liable to do something that the application won’t
understand or can’t cope with in a normal manner. Alerts give applications a way to
respond to errors not only in a consistent manner, but in stages according to the
severity of the error, the user’s level of expertise, and the particular history of
the error. The two kinds of alerts are beeps and alert boxes.

Beeps are used for errors that are both minor and immediately obvious. For example, if
the user tries to backspace past the left boundary of a text field, the application
could choose to beep instead of putting up an alert box. A beep can also be part of a
staged alert, as described below.

An alert box looks like a modal dialog box, except that it’s somewhat narrower and
appears lower on the screen. An alert box is primarily a one way communication from
the system to the user; the only way the user can respond is by clicking buttons.
Therefore alert boxes might contain dials and buttons, but usually not text fields,

SpInside Macintosh -- May 1992 -- 68 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

radio buttons, or check boxes. Figure 41 shows a typical alert box.
e=<Click on the lllustration button, and refer to Figure 41.ee
Figure 41-An Alert Box

There are three types of alert boxes:

< Note: A minor mistake that wouldn’t have any disastrous consequences
if left as is.

e Caution: An operation that may or may not have undesirable results
if it’s allowed to continue. The user is given the choice whether or
not to continue.

e Stop: A serious problem or other situation that requires remedial
action by the user.

An application can define different responses for each of several stages of an alert,
so that if the user persists in the same mistake, the application can issue
increasingly more helpful (or sterner) messages. A typical sequence is for the first
two occurrences of the mistake to result in a beep, and for subsequent occurrences to
result in an alert box. This type of sequence is especially appropriate when the
mistake is one that has a high probability of being accidental (for example, when the
user chooses Cut when there’s no text selection).

How the buttons in an alert box are labeled depends on the nature of the box. If the
box presents the user with a situation in which no alternative actions are available,
the box has a single button that’s labeled OK. Clicking this button means “I’ve read
the alert.” If the user is given alternatives, then typically the alert is phrased as
a gquestion that can be answered ‘“yes” or “no”. In this case, buttons labeled Yes and
No are appropriate, although some variation such as Save and Don’t Save is also
acceptable. OK and Cancel can be used, as long as their meanings aren’t ambiguous.

The preferred (safest) button to use in the current situation is boldly outlined. This
is the alert’s default button; its effect occurs if the user presses Return or Enter.

It’s important to phrase messages in alert boxes so that users aren’t left guessing
the real meaning. Avoid computer jargon.

Use icons whenever possible. Graphics can better describe some error situations than
words, and familiar icons help users distinguish their alternatives better. lIcons
should be internationally comprehensible; they shouldn’t contain any words, or any
symbols that are unique to a particular country.

Generally, it’s better to be polite than abrupt, even if It means lengthening the
message. The role of the alert box is to be helpful and make constructive suggestions,
not to give orders. But its focus is to help the user solve the problem, not to give
an interesting but academic description of the problem itself.

Under no circumstances should an alert message refer the user to external
documentation for further clarification. It should provide an adequate description of
the information needed by the user to take appropriate action.

The best way to make an alert message understandable is to think carefully through the
error condition itself. Can the application handle this without an error? Is the error
specific enough so that the user can fix the situation? What are the recommended
solutions? Can the exact item causing the error be displayed in the alert

message?

COLOR

Apple’s goal in adding color to the desktop user interface is to add meaning, not just
to color things so they “look good”. Color can be a valuable additional channel of
information to the user, but must be used carefully; otherwise, it can have the
opposite of the effect you were trying for, and can be overwhelming visually (or look

SpInside Macintosh -- May 1992 -- 69 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

game-like).

Color is ultimately the domain of the user, who should be able to modify or remove any
coloring imposed by the application. Unless you are implementing a color application
such as a paint or draw program, you should consider color only for the data, not the
interface.

In order to successfully implement color in an application, you should understand some
of the complex issues surrounding its use. Many major theories on the proper use of
color are not complete or well defined. The way in which the human eye sees color is
not fully understood, nor are color’s subjective effects.

Standard Uses of Color

In traditional user interface design, color is used to associate or separate objects
and information in the following ways:

discriminate between different areas

show which things are functionally related
show relationships between things

identify crucial features

Color Coding

Different colors have standard associations in different cultures. ‘“Meanings” of
colors usually have nothing to do with the wavelength of the color, but are learned
through conditioning within a particular culture. Some of the more universal meanings
for colors are

e Red: stop, error, or failure. (For disk drives, red also means
disk access in progress; don’t remove the disk or turn it off.).

= Yellow: warning, caution, or delay.

Green: go, ready, or power on.

= Warm versus cold: reds, oranges, and yellows are perceived as hot
or exciting colors; blues and greens are cool, calm colors.

Colors often have additional standard meanings within a particular discipline: in the
financial world, red means loss and black means gain. To a mapmaker, green means
wooded areas, blue means water, yellow means deserts. In an application for a
specific field, you can take advantage of these meanings; In a general application,
you should allow users to change the colors and to turn off any color-coding that you
use as a default.

For attracting the user’s attention, orange and red are more effective than other
colors, but usually connote “warning” or “danger”. (Be aware, though, that in some
cases, attracting the eye might not be what you want to do; for example, if
“dangerous” menu items are colored red, the user’s eye will be attracted to the red
items, and the user might be more likely to select the items by mistake.)

Although the screen may be able to display 256 or more colors, the human eye can
discriminate only around 128 pure hues. Furthermore, when colors are used to signify
information, studies have shown that the mind can only effectively follow four to
seven color assignments on a screen at once.

General Principles of Color Design

Two principles should guide the design of your application: begin the design in black
and white, and limit the use of color, especially in the application’s use of the
standard interface.

SpInside Macintosh -- May 1992 -- 70 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Design in Black and White

You should design your application first in black and white. Color should be
supplementary, providing extra information for those users who have color. Color
shouldn”t be the only thing that distinguishes two objects; there should always be
other cues, such as shape, location, pattern, or sound. There are several reasons for
this:

= Monitors: Most of your users won’t have color. The majority of Macintosh
computers that Apple ships are black and white, and will continue to be
so for some time.

= Printing: Currently, color printing is not very accurate, and even when
high-quality color printing becomes available, there is usually a
significant change in colors between media.

= Colorblindness: A significant percentage of the population is colorblind
to some degree. (In Europe and America, about 8% of males and 0.5% of
females have some sort of defective color vision.) The most common form
of colorblindness is a loss of ability to distinguish red and green from
gray. In another form, yellow, blue, and gray are indistinguishable.

e Lighting: Under dim lighting conditions, colors tend to wash out and
become difficult for the eye to distinguish—the differences between colors
must be greater, and the number of colors fewer, for them to be
discernable. You can’t know the conditions under which your application
may be used.

Limit Color Use

In the standard interface part of applications (menus, window frames, etc.), color
should be used mimimally or not at all; the Macintosh interface is very succesful in
black and white. You want the user’s attention focused on the content of the
application, rather than distracted by color in the menus or scroll bars.
Availability of color in the content area of your application depends on the sort of
application:

= Graphics applications, which are concerned with the image itself,
should take full advantage of the color capabilities of Color QuickDraw,
letting the user choose from and modify as many colors as are available.

= Other applications, which deal with the organization of information,
should limit the use of color much more than this. Color-coding should
be allowed or provided to make the information clearer. Providing the
user with a small initial selection of distinct colors—four to seven at
most-with the capability of changing those or adding more, is the best
solution to this.

Contrast and Discrimination

Color adds another dimension to the array of possible contrasts, and care must be
given to maintain good readability and discernment.

Colors on Grays

Colors look best against a background of neutral gray, like the desktop. Colors
within your application will stand out more if the background and surrounding areas
(such as the window frame and menus) are black and white or gray.

Colored Text

Reading and legibility studies in the print (paper) world show that colored text is
harder to read than black text on a white background. This also appears to be true in
the limited studies that have been done in the computer domain, although almost all
these studies have looked at colors on a black background, not the white background
used in the Macintosh.

Beware of Blue

SpInside Macintosh -- May 1992 -- 71 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

The most illegible color is light blue, which should be avoided for text,

thin lines, and small shapes. Adjacent colors that differ only in the amount of blue
should also be avoided. However, for things that you want to go unnoticed, like grid
lines, blue is the perfect color (think of graph paper or lined paper).

Small Objects
People cannot easily discriminate between small areas of color—to be able to tell what

color something is, you have to have enough of it. Changes in the color of small
objects must be obvious, not subtle.

Specific Recommendations

Remember that color should never be the only thing that distinguishes objects. Other
cues such as shape, location, pattern, or sound, should always be used in addition to
color, for the reasons discussed above.

Color the Black Bits Only

Generally, all interface elements should maintain a white background, using color to
replace black pixels as appropriate. Maintaining the white background and only
coloring what is already black (if something needs to be colored at all) helps to
maintain the clarity and the “look and feel” of the Macintosh interface.

Leave Outlines Black

Outlines of menus, windows, and alert and dialog boxes should remain in black. Edges
formed by color differences alone are hard for the eye to focus on, and these objects
may appear against a colored desktop or window.

Highlighting and Selection

Most things—menu items, icons, buttons, and so forth-should highlight by reversing the
white background with the colored or black bits when selected.

(For example, if the item is red on a white background, it should highlight to white
on a red background.) However, if multiple colors of text appear together, Color
TextEdit allows the user to set the highlighting bar color to something other than
black to highlight the text better. The default for the bar color is always black.

Menus

In general, the only use of color in menus should be in menus used to choose colors.
However, color could also be useful for directing the user’s choices in training and
tutorial materials: one color can lead the user through a lesson.

Windows

Since the focus of attention is on the content region of the window, color should be
used only in that area. Using color in the scroll bars or title bar can simply
distract the user. (A possible exception would be coloring part of a window to match
the color of the icon from which it came.)

Dialogs and Alerts

Except for dialog boxes used to select colors, there’s no reason to color dialog
boxes; they should be designed and laid out clearly enough that color isn’t necessary
to separate different sections or items. Alert boxes must be as clear as possible;
color can add confusion instead of clarity. For example, if you tried to make things
clearer by using red to mean “dangerous” and green to mean “‘safe” in the Erase Disk
alert, the OK button (“‘go’) would be red and the Cancel (“‘stop’) button would be
green. Don’t do this.

Pointers

SpInside Macintosh -- May 1992 -- 72 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Most of the time, when the pointer is being used for selecting and pointing, it should
remain black—color might not be visible over potentially different colored
backgrounds, and wouldn’t give the user any extra information. However, when the user
is drawing or typing in color, the drawing or text-insertion pointer should appear in
the color that is being used. Except for multicolored paintbrush pointers, the
pointer shouldn’t contain more than one color at once—it’s hard for the eye to
discriminate small areas of color.

SOUND

The high-quality sound capabilities of the Macintosh let sound be integrated into the
human interface to give users additional information. This section refers to sound as
a part of the interface in standard applications, not to the way sound is used in an
application that uses the sound itself as data, such as a music composition
application.

When to Use Sound
There are two general ways that sound can be used in the interface:

= It can be integrated throughout the standard interface to help make
the user aware of the state of the computer or application.

e It can be used to alert the user when something happens unexpectedly,
in the background, or when the user is not looking at the screen.

In general, when you put an indicator on the screen to tell the user something—for
example, to tell the user that mail has come in, or to show a particular state-it’s
also appropriate to use a sound.

Getting Attention

If the computer is doing something time-consuming, and the user may have turned away
from the screen, sound is a good way to let the user know that the process is
finished, or it needs attention. (There should also be an indication on the screen,
of course.)

Alerts

Common alerts can use sounds other than the SysBeep for their first stage or two
before bringing up an alert box. For example, when users try to paste when there’s
nothing in the Clipboard, or try to backspace past the top of a field, different
sounds could alert them.

Modes
If your application has different states or modes, each one can have a particular

sound when the user enters or leaves. This can emphasize the current mode, and
prevent confusion.

General Guidelines

Although the use of sound in the Desktop Interface hasn’t been investigated
thoroughly, these are some general guidelines to keep in mind.

Don”t Go Overboard

Be thoughtful about where and how you use sound in an application. If you overuse
sound, it won’t add any meaning to the interface, and will probably be annoying.

SpInside Macintosh -- May 1992 -- 73 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Use Redundancy

Sound should never be the only indication that something has happened; there should
always be a visible indication on the screen, too, especially when the user needs to
know what happened. The user may have all sound turned off, may have been out of
hearing range of the computer, or may have a hearing impairment.

Natural and Unobtrusive

Most sounds can be quite subtle and still getting their meaning across. Loud, harsh
sounds can be offensive or intimidating. You should always use the sound yourself and
test it on users for a significant period of time (a week or two, not twenty minutes)
before including it in your application—-if you turn it off after a day, chances are
other people will, too. You should also avoid using tunes or jingles—more than two or
three notes of a tune may become annoying or sound silly if heard very often.

Significant Differences

Users can learn to recognize and discriminate between sounds, but different sounds
shoulld be significantly different. Nonmusicians often can’t tell the difference
between two similar notes or chords, especially when the sounds are separated by a
space of time.

User Control

The user can change the volume of sounds, or turn sound off altogether, using the
Control Panel desk accessory. Never override this capability.

Resources

Always store sounds as resources, SO users can change sounds and add additional
sounds.

USER TESTING

The primary test of the user interface is its success with users: can people
understand what to do and can they accomplish the task at hand easily and efficiently?
The best way to answer these questions is to put them to the users.

Build User Testing Into the Design Process

Users should be involved early in the design process so that changes in the basic
concept of the product can still be made, if necessary. Although there’s a natural
tendency to wait for a good working prototype before showing the product to anyone,
this is too late for the user to have a significant impact on design. In the absence
of working code, you can show test subjects alternate designs on paper or storyboards.
There are lots of ways that early concepts can be tested on potential users of a
product. Then, as the design progresses, the testing can become more refined and can
focus on screen designs and specific features of the interface.

Test Subjects

There is no such thing as a “typical user”. You should, however, be able to identify
some people who are familiar with the task your application supports but are
unfamiliar with the specific technology you are using. These “naive experts” make
good subjects because they don’t have to be taught what the application is for, they
are probably already motivated to use it, and they know what is required to accomplish
the task.

SpInside Macintosh -- May 1992 -- 74 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

You don’t need to test a lot of people. The best procedure for formative testing
(testing during the design process) is to collect data from a few subjects, analyze
the results and apply them as appropriate. Then, identify new questions that arise
and questions that still need answers, and begin all over again—it is an iterative
process.

Procedures

Planning and carrying out a true experimental test takes time and expert training.
But many of the gquestions you may have about your design do not require such a rigid
approach. Furthermore, the computer and application already provide a controlled
setting from which objective data can be gathered quite reliably. The major
requirements are

= to make objective observations
= to record the data during the user-product interaction

Objective observations include measures of time, frequencies, error rates, and so
forth. The simple and direct recording of what the person does and says while working
is also an objective observation, however, and is often very useful to designers.

Test subjects can be encouraged to talk as they work, telling what they are doing,
trying to do, expect to happen, etc. This record of a person’s thinking aloud is
called a protocol by researchers in the fields of cognition and problem-solving, and
is a major source of their data.

The process of testing described here involves the application designer and the test
subjects in a regular cycle of feedback and revision. Although the test procedures
themselves may be informal, user-testing of the concepts and features of the interface
becomes a regular, integral part of the design process.

DO”S AND DON”TS OF A FRIENDLY USER INTERFACE

Do:

= Let the user have as much control as possible over the appearance
of objects on the screen—their arrangement, size, and visibility.
Use verbs for menu commands that perform actions.

Make alert messages self-explanatory.

Use controls and other graphics instead of just menu commands.
Take the time to use good graphic design; it really helps.

Don”t:

= Overuse modes, including modal dialog boxes.
= Require using the keyboard for an operation that would be easier
with the mouse, or require using the mouse for an operation that
would be easier with the keyboard.
= Change the way the screen looks unexpectedly, especially by scrolling
automatically more than necessary.
= Redraw objects unnecessarily; it causes the screen to flicker annoyingly.
Make up your own menus and then give them the same names as standard menus.
= Take an old-fashioned prompt-based application originally developed
for another machine and pass it off as a Macintosh application.

BIBLIOGRAPHY

The following books are recommended reading for those interested in the effective use

SpInside Macintosh -- May 1992 -- 75 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

of color in the user interface.

Favre, J., and A. November. Color and Communication. Zurich, Switzerland: ABC Edition,
1979.

Greenberg, D., A. Marcus, A. Schmidt, and V. Gorter. The Computer Image. Menlo Park,
California: Addison-Wesley Publishing Co., 1982.

Itten, J. The Elements of Color, edited by F. Birren. New York: Van Nostrand Reinhold
Co., 1970.

Schneiderman, B. Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Reading, Massachusetts: Addison-Wesley Publishing Co., 1987.

END OF FILE 003 Macintosh User Interface

SpInside Macintosh -- May 1992 -- 76 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

##H# FILE: 004 Macintosh Memory Management

MACINTOSH MEMORY MANAGEMENT: AN INTRODUCTION

About This Chapter

The Stack and the Heap

Pointers and Handles

General-Purpose Data Types
Type Coercion

Summary

ABOUT THIS CHAPTER

This chapter contains the minimum information you’ll need about memory management on
the Macintosh. Memory management is covered in greater detail in the Memory Manager
section.

THE STACK AND THE HEAP

A running program can dynamically allocate and release memory in two places: the
stack or the heap. The stack is an area of memory that can grow or shrink at one end
while the other end remains fixed, as shown in Figure 1. This means that space on the
stack is always allocated and released in LIFO (last-in-first-out) order: The last
item allocated is always the first to be released. It also means that the allocated
area of the stack is always contiguous. Space is released only at the top of the
stack, never in the middle, so there can never be any unallocated “holes” in the
stack.

ee<Click on the Illustration button, and refer to Figure 1l.eee
Figure 1-The Stack

By convention, the stack grows from high toward low memory addresses. The end of the
stack that grows and shrinks is usually referred to as the “top” of the stack, even
though it’s actually at the lower end of the stack in memory.

When programs in high-level languages declare static variables (such as with the
Pascal VAR declaration), those variables are allocated on the stack.

The other method of dynamic memory allocation is from the heap. Heap space is
allocated and released only at the program’s explicit request, through calls to the
Memory Manager .

Space in the heap is allocated in blocks, which may be of any size needed for a
particular object. The Memory Manager does all the necessary “housekeeping” to keep
track of the blocks as they’re allocated and released. Because these operations can
occur in any order, the heap doesn’t grow and shrink in an orderly way like the stack.
After a program has been running for a while, the heap tends to become fragmented into
a patchwork of allocated and free blocks, as shown in Figure 2.

ee«Click on the lllustration button, and refer to Figure 2_eee
Figure 2-A Fragmented Heap

As a result of heap fragmentation, when the program asks to allocate a new block of a

SpInside Macintosh -- May 1992 -- 77 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

certain size, it may be impossible to satisfy the request even though there’s enough
free space available, because the space is broken up into blocks smaller than the
requested size. When this happens, the Memory Manager will try to create the needed
space by compacting the heap: moving allocated blocks together in order to collect
the free space into a single larger block

(see Figure 3).

ee«Click on the lllustration button, and refer to Figure 3.eee
Figure 3-Heap Compaction

There’s a system heap that’s used by the Operating System and an application heap
that’s used by the Toolbox and the application program.

POINTERS AND HANDLES

The Memory Manager contains a few fundamental routines for allocating and releasing
heap space. The NewPtr function allocates a block in the heap of a requested size and
returns a pointer to the block. You can then make as many copies of the pointer as you
need and use them in any way your program requires. When you’re finished with the
block, you can release the memory it occupies

(returning it to available free space) with the DisposPtr procedure.

Once you’ve called DisposPtr, any pointers you may have to the block become invalid,
since the block they’re supposed to point to no longer exists. You have to be careful
not to use such “dangling” pointers. This type of bug can be very difficult to
diagnose and correct, since its effects typically aren’t discovered until long after
the pointer is left dangling.

Another way a pointer can be left dangling is for its underlying block to be moved to
a different location within the heap. To avoid this problem, blocks that are referred
to through simple pointers, as in Figure 4, are nonrelocatable. The Memory Manager
will never move a nonrelocatable block, so you can rely on all pointers to it to
remain correct for as long as the block remains allocated.

ee<Click on the lllustration button, and refer to Figure 4.ee~
Figure 4-A Pointer to a Nonrelocatable Block

If all blocks in the heap were nonrelocatable, there would be no way to prevent the
heap’s free space from becoming fragmented. Since the Memory Manager needs to be able
to move blocks around in order to compact the heap, it also uses relocatable blocks.
(All the allocated blocks shown above In Figure 3, the illustration of heap
compaction, are relocatable.) To keep from creating dangling pointers, the Memory
Manager maintains a single master pointer to each relocatable block. Whenever a
relocatable block is created, a master pointer is allocated from the heap at the same
time and set to point to the block. All references to the block are then made by
double indirection, through a pointer to the master pointer, called a handle to the
block (see Figure 5). If the Memory Manager needs to move the block during compaction,
it has only to update the master pointer to point to the block’s new location; the
master pointer itself is never moved. Since all copies of the handle point to this
same master pointer, they can be relied on not to dangle, even after the block has
been moved.

ee<Click on the Illustration button, and refer to Figure 5.eee

Figure 5-A Handle to a Relocatable Block

Relocatable blocks are moved only by the Memory Manager, and only at well-defined,
predictable times. In particular, only the routines listed in Appendix B can cause

blocks to move, and these routines can never be called from within an interrupt. IFf
your program doesn’t call these routines, you can rely on blocks not being moved.

SpInside Macintosh -- May 1992 -- 78 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

The NewHandle function allocates a block in the heap of a requested size and returns a
handle to the block. You can then make as many copies of the handle as you need and
use them in any way your program requires. When you’re finished with the block, you
can free the space it occupies with the DisposHandle procedure.

Note: Toolbox routines that create new objects of various kinds, such as
NewWindow and NewControl, implicitly call the NewPtr and NewHandle
routines to allocate the space they need. There are also analogous
routines for releasing these objects, such as DisposeWindow and
DisposeControl .

If the Memory Manager can’t allocate a block of a requested size even after compacting
the entire heap, it can try to free some space by purging blocks from the heap.
Purging a block removes it from the heap and frees the space it occupies. The block’s
master pointer is set to NIL, but the space occupied by the master pointer itself
remains allocated. Any handles to the block now point to a NIL master pointer, and are
said to be empty. IT your program later needs to refer to the purged block, it can
detect that the handle has become empty and ask the Memory Manager to reallocate the
block. This operation updates the original master pointer, so that all handles to the
block are left referring correctly to its new location (see Figure 6).

Warning: Reallocating a block recovers only the space it occupies, not its
contents. Any information the block contains is lost when the block
is purged. It’s up to your program to reconstitute the block’s
contents after reallocating it.

Relocatable and nonrelocatable are permanent properties of a block that can never be
changed once the block is allocated. A relocatable block can also be locked or
unlocked, purgeable or unpurgeable; your program can set and change these attributes
as necessary. Locking a block temporarily prevents it from being moved, even if the
heap is compacted. The block can later be unlocked, again allowing the Memory Manager
to move it during compaction. A block can be purged only if it’s relocatable,
unlocked, and purgeable. A newly allocated relocatable block is initially unlocked and
unpurgeable.

e=<Click on the lllustration button, and refer to Figure 6.ee~

Figure 6-Purging and Reallocating a Block

General-Purpose Data Types

The Memory Manager includes a number of type definitions for general-purpose use. For
working with pointers and handles, there are the following definitions:

TYPE SignedByte = -128..127;
Byte = 0..255;
Ptr = /~SignedByte;
Handle = "Ptr;

SignedByte stands for an arbitrary byte in memory, just to give Ptr and Handle
something to point to. You can define a buffer of, say, bufSize untyped memory bytes
as a PACKED ARRAY[1..bufSize] OF SignedByte. Byte is an alternative definition that
treats byte-length data as unsigned rather than signed quantities.

For working with strings, pointers to strings, and handles to strings, the Memory
Manager includes the following definitions:

TYPE Str255 = STRING[255];
StringPtr = NStr255;
StringHandle = ~StringPtr;

For treating procedures and functions as data objects, there’s the ProcPtr data type:

SpInside Macintosh -- May 1992 -- 79 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

TYPE ProcPtr = Ptr;
For example, after the declarations

VAR aProcPtr: ProcPtr;

PROCEDURE MyProc;
BEGIN

END;
you can make aProcPtr point to MyProc by using Lisa Pascal’s @ operator, as follows:
aProcPtr := @MyProc

With the @ operator, you can assign procedures and functions to variables of type
ProcPtr, embed them in data structures, and pass them as arguments to other routines.
Notice, however, that the data type ProcPtr technically points to an arbitrary byte
(SignedByte), not an actual routine. As a result, there’s no way in Pascal to access
the underlying routine via this pointer in order to call it. Only routines written in
assembly language (such as those in the Operating System and the Toolbox) can actually
call the routine designated by a pointer of type ProcPtr.

Warning: You can’t use the @ operator with procedures or functions
whose declarations are nested within other routines.

Finally, for treating long integers as fixed-point numbers, there’s the following data
type:

TYPE Fixed = LONGINT;

As illustrated in Figure 7, a fixed-point number is a 32-bit signed quantity
containing an integer part in the high-order word and a fractional part in the low-
order word. Negative numbers are the two’s complement; they’re formed by treating the
fixed-point number as a long integer, inverting each bit, and adding 1 to the least
significant bit.

ee<Click on the lllustration button, and refer to Figure 7.eee

Figure 7-Fixed-Point Number

Type Coercion
Because of Pascal’s strong typing rules, you can’t directly assign a value of type Ptr
to a variable of some other pointer type, or pass it as a parameter of some other
pointer type. Instead, you have to coerce the pointer from one type to another. For
example, assume the following declarations have been made:
TYPE Thing = RECORD

END;

ThingPtr = ~Thing;
ThingHandle = ~ThingPtr;

VAR aPtr: Ptr;
aTthingPtr: ThingPtr;
aThingHandle: ThingHandle;
In the Lisa Pascal statement

aThingPtr := ThingPtr(NewPtr(SI1ZEOF(Thing)))

SpInside Macintosh -- May 1992 -- 80 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

NewPtr allocates heap space for a new record of type Thing and returns a pointer of
type Ptr, which is then coerced to type ThingPtr so it can be assigned to aThingPtr.
The statement

DisposPtr(Ptr(aThingPtr))
disposes of the record pointed to by aThingPtr, first coercing the pointer to type Ptr
(as required by the DisposPtr procedure). Similar calls to NewHandle and DisposHandle
would require coercion between the data types Handle and ThingHandle. Given a pointer
aPtr of type Ptr, you can make aThingPtr point to the same object as aPtr with the
assignment

aThingPtr := ThingPtr(aPtr)
or you can refer to a field of a record of type Thing with the expression

ThingPtr(aPtr)”._field

In fact, you can use this same syntax to equate any two variables of the same length.
For example:

VAR aChar: CHAR;
aByte: Byte;
aByte := Byte(aChar)

You can also use the Lisa Pascal functions ORD, ORD4, and POINTER, to coerce variables
of different length from one type to another. For example:

VAR aninteger: INTEGER;
alongInt: LONGINT;
aPointer: Ptr;

anlnteger := ORD(aLonglnt); {two low-order bytes only}
anlnteger := ORD(aPointer); {two low-order bytes only}
aLongInt := ORD(anlnteger); {packed into high-order bytes}
aLlonglnt := ORD4(anlnteger); {packed into low-order bytes}
aLlonglnt := ORD(aPointer);

aPointer := POINTER(anlnteger);

aPointer := POINTER(aLongint)

Assembly-language note: OF course, assembly-language programmers needn’t
bother with type coercion.

SUMMARY

TYPE SignedByte = -128..127;
Byte = 0..255;
Ptr = ~SignedByte;
Handle = Ptr;
Str255 = STRING[255];
StringPtr = NStr255;
StringHandle = ~StringPtr;

ProcPtr = Ptr;
Fixed = LONGINT

Further Reference:

SpInside Macintosh -- May 1992 -- 81 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Memory Manager
Technical Note #18, TextEdit Conversion Utility
Technical Note #42, Pascal Routines Passed by Pointer

END OF FILE 004 Macintosh Memory Management

SpInside Macintosh -- May 1992 -- 82 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

##H# FILE: 005 Using Assembly Language

USING ASSEMBLY LANGUAGE

About This Chapter
Definition Files
Pascal Data Types
The Trap Dispatch Table
The Trap Mechanism
Format of Trap Words
Trap Macros
Calling Conventions
Stack-Based Routines
Register-Based Routines
Macro Arguments
Result Codes
Register-Saving Conventions
Pascal Interface to the Toolbox and Operating System
Mixing Pascal and Assembly Language
Summary

ABOUT THIS CHAPTER

This chapter gives you general information that you’ll need to write all or part of
your Macintosh application program in assembly language. It assumes you already know
how to write assembly-language programs for the Motorola MC68000, the microprocessor
in the Macintosh.

DEFINITION FILES

The primary aids to assembly-language programmers are a set of definition files for
symbolic names used in assembly-language programs. The definition files include equate
files, which equate symbolic names with values, and macro files, which define the
macros used to call Toolbox and Operating System routines from assembly language. The
equate Files define a variety of symbolic names for various purposes, such as:

useful numeric quantities

masks and bit numbers

offsets into data structures

addresses of global variables (which in turn often contain addresses)

It’s a good idea to always use the symbolic names defined in an equate file in place
of the corresponding numeric values (even if you know them), since some of these
values may change. Note that the names of the offsets for a data structure don’t
always match the field names in the corresponding Pascal definition. In the
documentation, the definitions are normally shown in their Pascal form; the
corresponding offset constants for assembly language use are listed in the summary at
the end of each chapter.

Some generally useful global variables defined in the equate files are as follows:

Name Contents
OneOne $00010001
MinusOne $FFFFFFFF

SpInside Macintosh -- May 1992 -- 83 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Lo3Bytes $O0OFFFFFF

Scratch20 20-byte scratch area

Scratch8 8-byte scratch area

ToolScratch 8-byte scratch area

ApplScratch 12-byte scratch area reserved for use by applications

Scratch20, Scratch8, and ToolScratch will not be preserved across calls to the
routines in the Macintosh ROM. ApplScratch will be preserved; it should be used only
by application programs and not by desk accessories or other drivers.

Other global variables are described where relevant in Inside Macintosh. A list of all
the variables described is given in Appendix D.

PASCAL DATA TYPES

Pascal’s strong typing ability lets Pascal programmers write programs without really
considering the size of variables. But assembly language programmers must keep track
of the size of every variable. The sizes of the standard Pascal data types, and some
of the basic types defined in the Memory Manager, are listed below. (See the Apple
Numerics Manual for more information about SINGLE, DOUBLE, EXTENDED, and COMP.)

Type Size Contents

INTEGER 2 bytes Two’s complement integer

LONGINT 4 bytes Two’s complement integer

BOOLEAN 1 byte Boolean value in bit O

CHAR 2 bytes Extended ASCIIl code in low-order byte

SINGLE (or REAL)
4 bytes IEEE standard single format
DOUBLE 8 bytes IEEE standard double format
EXTENDED 10 bytes IEEE standard extended format
COMP (or COMPUTATIONAL)
8 bytes Two’s complement integer with reserved value
STRING[n] n+1 bytes Byte containing string length (not counting
length byte) followed by bytes containing
ASCI1 codes of characters in string
SignedByte 1 byte Two”s complement integer

Byte 2 bytes Value in low-order byte
Ptr 4 bytes Address of data
Handle 4 bytes Address of master pointer

Other data types are constructed from these. For some commonly used data types, the
size in bytes is available as a predefined constant.

Before allocating space for any variable whose size is greater than one byte, Pascal
adds “padding” to the next word boundary, if it isn’t already at a word boundary. It
does this not only when allocating variables declared successively in VAR statements,
but also within arrays and records. As you would expect, the size of a Pascal array or
record is the sum of the sizes of all its elements or fields (which are stored with
the First one at the lowest address). For example, the size of the data type

TYPE TestRecord = RECORD
testHandle: Handle;
testBoolA: BOOLEAN;
testBoolB: BOOLEAN;
testChar: CHAR
END;

is eight bytes: four for the handle, one each for the Booleans, and two for the
character. If the testBoolB field weren’t there, the size would be the same, because
of the byte of padding Pascal would add to make the character begin on a word
boundary .

SpInside Macintosh -- May 1992 -- 84 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

In a packed record or array, type BOOLEAN is stored as a bit, and types CHAR and Byte
are stored as bytes. The padding rule described above still applies. For example, if
the TestRecord data type shown above were declared as PACKED RECORD, it would occupy
only six bytes: four for the handle, one for the Booleans (each stored in a bit), and
one for the character. IT the last field were INTEGER rather than CHAR, padding before
the two byte integer field would cause the size to be eight bytes.

Note: The packing algorithm may not be what you expect. If you need to know
exactly how data is packed, or if you have questions about the size of
a particular data type, the best thing to do is write a test program
in Pascal and look at the results. (You can use the SIZEOF function to
get the size.)

THE TRAP DISPATCH TABLE

The Toolbox and Operating System reside in ROM. However, to allow flexibility for
future development, application code must be kept free of any specific ROM addresses.
So all references to Toolbox and Operating System routines are made indirectly through
the trap dispatch table in RAM, which contains the addresses of the routines. As long
as the location of the trap dispatch table is known, the routines themselves can be
moved to different locations in ROM without disturbing the operation of programs that
depend on them.

Information about the locations of the various Toolbox and Operating System routines
is encoded in compressed form in the ROM itself. When the system starts up, this
encoded information is expanded to form the trap dispatch table. Because the trap
dispatch table resides in RAM, individual entries can be

“patched” to point to addresses other than the original ROM address. This allows
changes to be made in the ROM code by loading corrected versions of individual
routines into RAM at system startup and patching the trap dispatch table to point to
them. It also allows an application program to replace specific Toolbox and Operating
System routines with its own “custom” versions. A pair of utility routines for
manipulating the trap dispatch table, GetTrapAddress and SetTrapAddress, are described
in the Operating System Utilities chapter.

In the 64K ROM, references to both Toolbox and Operating System routines are made
through a single trap dispatch table. For compactness, entries in that table are
encoded into one word each. The high-order bit of each entry tells whether the routine
resides in ROM (0) or RAM (1). The remaining 15 bits give the offset of the routine
relative to a base address. For routines in ROM, this base address is the beginning of
the ROM; for routines in RAM, it’s the beginning of the system heap. The two base
addresses are kept in a pair of global variables named ROMBase and RAMBase. Using 15-
bit unsigned word offsets, the range of locations that the trap dispatch table can
address is limited to 64K bytes. Also, the interleaving of Operating System and
Toolbox trap numbers limits the total number of traps to 512 and means that no two
traps can be represented by the same number.

In the 128K ROM, the Toolbox and Operating System traps have separate dispatch tables.
Instead of a packed format, entries in these dispatch tables are stored as full long-
word addresses so the dispatcher makes no distinction between ROM and RAM addresses.
The Operating System dispatch table consists of 256 long words, from address $400
through $7FF; this replaces the old dispatch table of 512 words. The Toolbox table
consists of 512 long words, from address $C00 through $13FF.

Warning: The format of the trap dispatch tables may be different in future
versions of Macintosh system software. IT it’s absolutely necessary
that you manipulate the trap dispatch tables, use the Operating
System Utility routines NGetTrapAddress and NSetTrapAddress (or with
the 64K ROM, GetTrapAddress and SetTrapAddress); they’re described
in the Operating System Utilities chapter.

The offset In a trap dispatch table entry is expressed in words instead of bytes,
taking advantage of the fact that instructions must always fall on word boundaries

SpInside Macintosh -- May 1992 -- 85 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

(even byte addresses). As illustrated in Figure 1, the system does the following to
find the absolute address of the routine:

1. checks the high-order bit of the trap dispatch table entry to find
out which base address to use

2. doubles the offset to convert it from words to bytes (by left shifting
one bit)

3. adds the result to the designated base address

ee<Click on the Illustration button, and refer to Figure 1l.eee
Figure 1-Trap Dispatch Table Entry

Using 15-bit word offsets, the trap dispatch table can address locations within a
range of 32K words, or 64K bytes, from the base address. Starting from ROMBase, this
range is big enough to cover the entire ROM; but only slightly more than half of the
128K RAM lies within range of RAMBase. RAMBase is set to the beginning of the system
heap to maximize the amount of useful space within range; locations below the start of
the heap are used to hold global system data and can never contain executable code. If
the heap is big enough, however, it’s possible for some of the application’s code to
lie beyond the upper end of the trap dispatch table’s range. Any such code is
inaccessible through the trap dispatch table.

Note: This problem is particularly acute on the Macintosh 512K and
Macintosh XL. To make sure they lie within range of RAMBase,
patches to Toolbox and Operating System routines are typically
placed in the system heap rather than the application heap.

THE TRAP MECHANISM

Calls to the Toolbox and Operating System via the trap dispatch table are implemented
by means of the MC68000°s ‘1010 emulator” trap. To issue such a call in assembly
language, you use one of the trap macros defined in the macro files. When you assemble
your program, the macro generates a trap word in the machine language code. A trap
word always begins with the hexadecimal digit $A

(binary 1010); the rest of the word identifies the routine you’re calling, along with
some additional information pertaining to the call.

Note: A list of all Macintosh trap words is given in Appendix C.

Instruction words beginning with $A or $F (“A-line” or “F-line” instructions) don’t
correspond to any valid machine language instruction, and are known as unimplemented
instructions. They’re used to augment the processor’s native instruction set with
additional operations that are “emulated” in software instead of being executed
directly by the hardware. A-line instructions are reserved for use by Apple; on a
Macintosh, they provide access to the Toolbox and Operating System routines.
Attempting to execute such an instruction causes a trap to the trap dispatcher, which
examines the bit pattern of the trap word to determine what operation it stands for,
looks up the address of the corresponding routine in the trap dispatch table, and
jumps to the routine.

Note: F-line instructions are reserved by Motorola for use in future
processors.

Format of Trap Words

As noted above, a trap word always contains $A in bits 12-15. Bit 11 determines how
the remainder of the word will be interpreted; usually it’s O for Operating System
calls and 1 for Toolbox calls, though there are some exceptions.

Figure 2 shows the Toolbox trap word format. Bits 0-8 form the trap number (an index

SpInside Macintosh -- May 1992 -- 86 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

into the trap dispatch table), identifying the particular routine being called. Bit 9
is reserved for future use. Bit 10 is the ““‘auto-pop” bit; this bit is used by language
systems that, rather than directly invoking the trap like Lisa Pascal, do a JSR to the
trap word followed immediately by a return to the calling routine. In this case, the
return addresses for the both the JSR and the trap get pushed onto the stack, in that
order. The auto-pop bit causes the trap dispatcher to pop the trap’s return address
from the stack and return directly to the calling program.

e=<Click on the lllustration button, and refer to Figure 2.eee~
Figure 2-Toolbox Trap Word (Bit 11=1)

For Operating System calls, only the low order eight bits (bits 0-7) are used for the
trap number (see Figure 3). Thus of the 512 entries in the trap dispatch table, only
the first 256 can be used for Operating System traps. Bit 8 of an Operating System
trap has to do with register usage and is discussed below under “Register Saving
Conventions”. Bits 9 and 10 have specialized meanings depending on which routine
you’re calling, and are covered where relevant in other chapters.

ee«Click on the lllustration button, and refer to Figure 3.eee
Figure 3-Operating System Trap Word (Bit 11=0)

As described above, a trap word begins with the hexadecimal digit $A (binary 1010);
the rest of the word identifies the routine you’re calling, along with additional
information pertaining to the call.

In the 64K ROM, an Operating System trap and a Toolbox trap cannot have the same trap
number; the GetTrapAddress and SetTrapAddress routines do not distinguish between
Toolbox and Operating System traps.

Since each group has its own dispatch table in the 128K ROM, there can be a Toolbox
trap and an Operating System trap with the same trap number. Two new routines—
NGetTrapAddress and NSetTrapAddress—have been added; they use bits 9 and 10 of their
trap word for specifying the group to which a routine belongs.

Trap Macros

The names of all trap macros begin with the underscore character (), followed by the
name of the corresponding routine. As a rule, the macro name is the same as the name
used to call the routine from Pascal, as given in the Toolbox and Operating System
documentation. For example, to call the Window Manager routine NewWindow, you would
use an instruction with the macro name _NewWindow in the opcode field. There are some
exceptions, however, in which the spelling of the macro name differs from the name of
the Pascal routine i1tself; these are noted in the documentation for the individual
routines.

Note: The reason for the exceptions is that assembler names must be unique
to eight characters. Since one character is taken up by the underscore,
special macro names must be used for Pascal routines whose names aren’t
unique to seven characters.

Trap macros for Toolbox calls take no arguments; those for Operating System calls may
have as many as three optional arguments. The first argument, if present, is used to
load a register with a parameter value for the routine

you’re calling, and is discussed below under “Register Based Routines”. The remaining
arguments control the settings of the various flag bits in the trap word. The form of
these arguments varies with the meanings of the flag bits, and is described in the
chapters on the relevant parts of the Operating System.

CALLING CONVENTIONS

SpInside Macintosh -- May 1992 -- 87 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

The calling conventions for Toolbox and Operating System routines fall into two
categories: stack based and register based. As the terms imply, stack based routines
communicate via the stack, following the same conventions used by the Pascal Compiler
for routines written in Lisa Pascal, while register based routines receive their
parameters and return their results in registers. Before calling any Toolbox or
Operating System routine, you have to set up the parameters in the way the routine
expects.

Note: As a general rule, Toolbox routines are stack based and Operating
System routines register based, but there are exceptions on both sides.
Throughout Inside Macintosh, register based calling conventions are
given for all routines that have them; if none is shown, then the
routine is stack based.

Stack-Based Routines

To call a stack based routine from assembly language, you have to set up the
parameters on the stack in the same way the compiled object code would if your program
were written in Pascal. If the routine you’re calling is a function, its result is
returned on the stack. The number and types of parameters, and the type of result
returned by a function, depend on the routine being called. The number of bytes each
parameter or result occupies on the stack depends on its type:

Type of parameter
or function

result Size Contents

INTEGER 2 bytes Two’s complement integer

LONGINT 4 bytes Two’s complement integer

BOOLEAN 2 bytes Boolean value in bit 0 of high-order byte
CHAR 2 bytes Extended ASCII code in low-order byte

SINGLE (or REAL), DOUBLE, COMP (or COMPUTATIONAL)

4 bytes Pointer to value converted to EXTENDED
EXTENDED 4 bytes Pointer to value
4

STRING[Nn] bytes Pointer to string (first byte
pointed to is length byte)
SignedByte bytes Value in low-order byte

2
Byte 2 bytes Value in low-order byte
Ptr 4 bytes Address of data
Handle 4 bytes Address of master pointer
Record or array 2 or 4 Contents of structure (padded to
bytes word boundary) if <= 4 bytes,
otherwise pointer to structure
VAR parameter 4 bytes Address of variable, regardless of type

The steps to take to call the routine are as follows:

1. [If it’s a function, reserve space on the stack for the result.

2. Push the parameters onto the stack in the order they occur in
the routine’s Pascal definition.

3. Call the routine by executing the corresponding trap macro.

The trap pushes the return address onto the stack, along with an extra word of
processor status information. The trap dispatcher removes this extra status word,
leaving the stack iIn the state shown in Figure 4 on entry to the routine. The routine
itselT is responsible for removing its own parameters from the stack before returning.
If it’s a function, it leaves its result on top of the stack in the space reserved for
it; if It’s a procedure, it restores the stack to the same state it was in before the
call.

ee<Click on the Illustration button, and refer to Figure 4.eee

Figure 4-Stack Format for Stack Based Routines

SpInside Macintosh -- May 1992 -- 88 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

For example, the Window Manager function GrowWindow is defined in Pascal as follows:

FUNCTION GrowWindow (theWindow: WindowPtr; startPt: Point;
sizeRect: Rect) : LONGINT;

To call this function from assembly language, you’d write something like the

following:

SUBQ.-L #4,SP ;make room for LONGINT result

MOVE.L theWindow,-(SP) ;push window pointer

MOVE.L startPt,-(SP) ;a Point is a 4-byte record,
;SO0 push actual contents

PEA sizeRect ;a Rect is an 8-byte record,
;SO push a pointer to it

_GrowWindow ;trap to routine

MOVE.L (SP)+,D3 ;pop result from stack

Although the MC68000 hardware provides for separate user and supervisor stacks, each
with its own stack pointer, the Macintosh maintains only one stack. All application
programs run in supervisor mode and share the same stack with the system; the user
stack pointer isn’t used.

Warning: For compatibility with future versions of the Macintosh, your
program should not rely on capabilities available only in
supervisor mode (such as the instruction RTE).

Remember that the stack pointer must always be aligned on a word boundary. This is
why, for example, a Boolean parameter occupies two bytes; it’s actually the Boolean
value followed by a byte of padding. Because all Macintosh application code runs in
the MC68000°s supervisor mode, an odd stack pointer will cause a

“double bus fault”: an unrecoverable system failure that causes the system to
restart.

To keep the stack pointer properly aligned, the MC68000 automatically adjusts the
pointer by 2 instead of 1 when you move a byte length value to or from the stack. This
happens only when all of the following three conditions are met:

= A one byte value is being transferred.
= Either the source or the destination is specified by
predecrement or postincrement addressing.
= The register being decremented or incremented is the stack pointer (A7).

An extra, unused byte will automatically be added in the low order byte to keep the
stack pointer even. (Note that if you need to move a character to or from the stack,
you must explicitly use a full word of data, with the character in the low order
byte.)

Warning: If you use any other method to manipulate the stack pointer, it’s
your responsibility to make sure the pointer stays properly aligned.

Note: Some Toolbox and Operating System routines accept the address of
one of your own routines as a parameter, and call that routine under
certain circumstances. In these cases, you must set up your routine
to be stack based.

Register-Based Routines

By convention, register based routines normally use register A0 for passing addresses
(such as pointers to data objects) and DO for other data values (such as integers).
Depending on the routine, these registers may be used to pass parameters to the
routine, result values back to the calling program, or both. For routines that take
more than two parameters (one address and one data

value), the parameters are normally collected in a parameter block in memory and a

SpInside Macintosh -- May 1992 -- 89 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

pointer to the parameter block is passed in AO. However, not all routines obey these
conventions; for example, some expect parameters in other registers, such as Al. See
the description of each individual routine for details.

Whatever the conventions may be for a particular routine, it’s up to you to set up the
parameters in the appropriate registers before calling the routine. For instance, the
Memory Manager procedure BlockMove, which copies a block of consecutive bytes from one
place to another in memory, expects to find the address of the first source byte in
register A0, the address of the first destination location in Al, and the number of
bytes to be copied in DO. So you might write something like

LEA src(A5),A0 ;source address in A0

LEA dest(A5),Al ;destination address in Al
MOVEQ #20,D0 ;byte count in DO
_BlockMove ; trap to routine

Macro Arguments

The following information applies to the Lisa Workshop Assembler. If you’re using some
other assembler, you should check its documentation to find out whether this
information applies.

Many register based routines expect to find an address of some sort in register AO.
You can specify the contents of that register as an argument to the macro instead of
explicitly setting up the register yourself. The first argument you supply to the
macro, if any, represents an address to be passed in AO. The macro will load the
register with an LEA (Load Effective Address) instruction before trapping to the
routine. So, for instance, to perform a Read operation on a file, you could set up the
parameter block for the operation and then use the instruction

_Read paramBlock ;trap to routine with pointer to
; parameter block in AO

This feature is purely a convenience, and is optional: If you don’t supply any
arguments to a trap macro, or if the first argument is null, the LEA to AO will be
omitted from the macro expansion. Notice that AO is loaded with the address denoted by
the argument, not the contents of that address.

Note: You can use any of the MC68000°s addressing modes to specify this
address, with one exception: You can’t use the two register indexing
mode (“‘address register indirect with index and displacement’™). An
instruction such as

_Read offset(A3,D5)

won”t work properly, because the comma separating the two registers
will be taken as a delimiter marking the end of the macro argument.

Result Codes

Many register-based routines return a result code in the low order word of register DO
to report successful completion or failure due to some error condition. A result code
of 0 indicates that the routine was completed successfully. Just before returning from
a register based call, the trap dispatcher tests the low order word of DO with a TST.W
instruction to set the processor’s condition codes. You can then check for an error by
branching directly on the condition codes, without any explicit test of your own. For
example:

_PurgeMem ;trap to routine
BEQ NoError ;branch if no error
.- - ;handle error

Warning: Not all register based routines return a result code. Some leave
the contents of DO unchanged; others use the full 32 bits of the
register to return a long word result. See the descriptions of
individual routines for details.

SpInside Macintosh -- May 1992 -- 90 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Register-Saving Conventions

All Toolbox and Operating System routines preserve the contents of all registers
except A0, Al, and DO-D2 (and of course A7, which is the stack pointer). In addition,
for register based routines, the trap dispatcher saves registers Al, D1, and D2 before
dispatching to the routine and restores them before returning to the calling program.
A7 and DO are never restored; whatever the routine leaves in these registers is passed
back unchanged to the calling program, allowing the routine to manipulate the stack
pointer as appropriate and to return a result code.

Whether the trap dispatcher preserves register AO for a register based trap depends on
the setting of bit 8 of the trap word: If this bit is 0, the trap dispatcher saves
and restores AO; if it’s 1, the routine passes back A0 unchanged. Thus bit 8 of the
trap word should be set to 1 only for those routines that return a result in AO, and
to 0 for all other routines. The trap macros automatically set this bit correctly for
each routine, so you never have to worry about it yourself.

Stack based traps preserve only registers A2-A6 and D3-D7. If you want to preserve any
of the other registers, you have to save them yourself before trapping to the routine
- typically on the stack with a MOVEM (Move Multiple) instruction - and restore them
afterward.

Warning: When an application starts up, register A5 is set to point to the
boundary between the application globals and the application
parameters (see the memory map in the Memory Manager chapter for
details). Certain parts of the system rely on finding A5 set up
properly (for instance, the first application parameter is a
pointer to the first QuickDraw global variable), so you have to
be a bit more careful about preserving this register. The safest
policy is never to touch A5 at all. If you must use it for your
own purposes, just saving its contents at the beginning of a
routine and restoring them before returning isn’t enough: You
have to be sure to restore it before any call that might depend
on it. The correct setting of A5 is always available in the global
variable CurrentA5.

Note: Any routine in your application that may be called as the result
of a Toolbox or Operating System call shouldn’t rely on the value
of any register except A5, which shouldn’t change.

Pascal Interface to the Toolbox and Operating System

When you call a register based Toolbox or Operating System routine from Pascal, you’re
actually calling an interface routine that fetches the parameters from the stack where
the Pascal calling program left them, puts them in the registers where the routine
expects them, and then traps to the routine. On return, it moves the routine’s result,
if any, from a register to the stack and then returns to the calling program. (For
routines that return a result code, the interface routine may also move the result
code to a global variable, where it can later be accessed.)

For stack-based calls, there’s no interface routine; the trap word is inserted
directly into the compiled code.

MIXING PASCAL AND ASSEMBLY LANGUAGE

You can mix Pascal and assembly language freely in your own programs, calling routines
written in either language from the other. The Pascal and assembly language portions
of the program have to be compiled and assembled separately, then combined with a

SpInside Macintosh -- May 1992 -- 91 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

program such as the Lisa Workshop Linker. For convenience in this discussion, such
separately compiled or assembled portions of a program will be called “modules”. You
can divide a program into any number of modules, each of which may be written in
either Pascal or assembly language.

References in one module to routines defined in another are called external
references, and must be resolved by a program like the Linker that matches them up
with their definitions In other modules. You have to identify all the external
references in each module so they can be resolved properly. For more information, and
for details about the actual process of linking the modules together, see the
documentation for the development system you’re using.

In addition to being able to call your own Pascal routines from assembly language, you
can call certain routines in the Toolbox and Operating System that were created
expressly for Lisa Pascal programmers and aren’t part of the Macintosh ROM. (These
routines may also be available to users of other development systems, depending on how
the interfaces have been set up on those systems.) They’re marked with the notation

[Not in ROM]

in Inside Macintosh. There are no trap macros for these routines (though they may call
other routines for which there are trap macros). Some of them were created just to
allow Pascal programmers access to assembly language information, and so won’t be
useful to assembly language programmers. Others, however, contain code that’s executed
before a trap macro is invoked, and you may want to perform the operations they
provide.

All calls from one language to the other, in either direction, must obey

Pascal’s stack based calling conventions (see “Stack Based Routines”, above). To call
your own Pascal routine from assembly language, or one of the Toolbox or Operating
System routines that aren’t in ROM, push the parameters onto the stack before the call
and (if the routine is a function) look for the result on the stack on return. In an
assembly language routine to be called from Pascal, look for the parameters on the
stack on entry and leave the result (if any) on the stack before returning.

Under stack based calling conventions, a convenient way to access a routine’s
parameters on the stack is with a frame pointer, using the MC68000°s LINK and UNLK
(Unlink) instructions. You can use any address register for the frame pointer (except
A7, which is reserved for the stack pointer), but register A6 is conventionally used
for this purpose on the Macintosh. The instruction

LINK A6,#-12

at the beginning of a routine saves the previous contents of A6 on the stack and sets
A6 to point to it. The second operand specifies the number of bytes of stack space to
be reserved for the routine’s local variables: in this case, 12 bytes. The LINK
instruction offsets the stack pointer by this amount after copying it into A6.

Warning: The offset is added to the stack pointer, not subtracted from it.
So to allocate stack space for local variables, you have to give
a negative offset; the instruction won’t work properly if the
offset is positive. Also, to keep the stack pointer correctly
aligned, be sure the offset is even. For a routine with no local
variables on the stack, use an offset of #0.

Register A6 now points within the routine’s stack frame; the routine can locate its
parameters and local variables by indexing with respect to this register

(see Figure 5). The register itself points to its own saved contents, which are often
(but needn’t necessarily be) the frame pointer of the calling routine. The parameters
and return address are found at positive offsets from the frame pointer.

ee<Click on the lllustration button, and refer to Figure 5.eee

Figure 5-Frame Pointer

Since the saved contents of the frame pointer register occupy a long word (four bytes)

SpInside Macintosh -- May 1992 -- 92 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

on the stack, the return address is located at 4(A6) and the last parameter at 8(A6).
This is followed by the rest of the parameters in reverse order, and finally by the
space reserved for the function result, if any. The proper offsets for these remaining
parameters and for the function result depend on the number and types of the
parameters, according to the table above under ““Stack Based Routines”. If the LINK
instruction allocated stack space for any local variables, they can be accessed at
negative offsets from the frame pointer, again depending on their number and types.

At the end of the routine, the instruction
UNLK A6

reverses the process: First it releases the local variables by setting the stack
pointer equal to the frame pointer (A6), then it pops the saved contents back into
register A6. This restores the register to its original state and leaves the stack
pointer pointing to the routine’s return address.

A routine with no parameters can now just return to the caller with an RTS
instruction. But if there are any parameters, it’s the routine’s responsibility to pop
them from the stack before returning. The usual way of doing this is to pop the return
address into an address register, increment the stack pointer to remove the
parameters, and then exit with an indirect jump through the register.

Remember that any routine called from Pascal must preserve registers A2-A6 and D3-D7.
This is usually done by saving the registers that the routine will be using on the
stack with a MOVEM instruction, and then restoring them before returning. Any routine
you write that will be accessed via the trap mechanism - for instance, your own
version of a Toolbox or Operating System routine that you’ve patched into the trap
dispatch table - should observe the same conventions.

Putting all this together, the routine should begin with a sequence like

MyRoutine LINK A6,#-dd ;set up frame pointer--
; dd = number of bytes
; of local variables
MOVEM.L A2-A4/D3-D7,-(SP) ;...or whatever
; registers you use

and end with something like
MOVEM.L (SP)+,A2-A4/D3-D7

UNLK A6
MOVE.L (SP)+,Al

;restore registers

;restore frame pointer

;save return address in an
; available register

ADD.W #pp,SP ;pop parameters--

; pp = number of bytes

; of parameters

IMP (AD ;return to caller

Notice that A6 doesn’t have to be included in the MOVEM instructions, since
it’s saved and restored by the LINK and UNLK.

SUMMARY

Variables

OneOne $00010001

MinusOne $FFFFFFFF

Lo3Bytes $00FFFFFF

Scratch20 20-byte scratch area
Scratch8 8-byte scratch area
ToolScratch 8-byte scratch area

ApplScratch 12-byte scratch area reserved for use by applications

SpInside Macintosh -- May 1992 -- 93 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

ROMBase Base address of ROM
RAMBase Trap dispatch table®s base address for routines in RAM
CurrentA5 Address of boundary between application globals

and application parameters

Further Reference:

Technical Note #21, QuickDraw’s Internal Picture Definition
Technical Note #88, Signals

Technical Note #103, MaxApplZone & MoveHHi from Assembly Language
Technical Note #156, Checking for Specific Functionality

Technical Note #164, MPW C Functions: To declare or not to declare..

END OF FILE 005 Using Assembly Language

SpInside Macintosh -- May 1992 -- 94 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

##H# FILE: 006 QuickDraw

QUICKDRAW

About This Chapter
About QuickDraw
The Mathematical Foundation of QuickDraw
The Coordinate Plane
Points
Rectangles
Regions
Graphic Entities
Bit Images
Bit Maps
Patterns
Cursors
Graphic Entities as Resources
The Drawing Environment: GrafPort
Pen Characteristics
Text Characteristics
Coordinates in GrafPorts
General Discussion of Drawing
Transfer Modes
Drawing in Color
Pictures and Polygons
Pictures
Polygons
Using QuickDraw
QuickDraw Routines
GrafPort Routines
Cursor-Handling Routines
Pen and Line-Drawing Routines
Text-Drawing Routines
Drawing in Color
Calculations with Rectangles
Graphic Operations on Rectangles
Graphic Operations on Ovals
Graphic Operations on Rounded-Corner Rectangles
Graphic Operations on Arcs and Wedges
Calculations with Regions
Graphic Operations on Regions
Bit Map Operations
Pictures
Calculations with Polygons
Graphic Operations on Polygons
Calculations with Points
Miscellaneous Routines
Advanced Routine
Customizing QuickDraw Operations
Summary of QuickDraw

ABOUT THIS CHAPTER

This chapter describes QuickDraw, the part of the Toolbox that allows Macintosh
programmers to perform highly complex graphic operations very easily and very quickly.
It describes the data types used by QuickDraw and gives details of the procedures and

functions available in QuickDraw.

SpInside Macintosh -- May 1992 -- 95 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

ABOUT QUICKDRAW

QuickDraw allows you to draw many different things on the Macintosh screen; some of
these are illustrated in Figure 1.

ee«Click on the lllustration button, and refer to Figure 1l.eee
Figure 1-Samples of QuickDraw’s Abilities
You can draw:

= text characters in a number of proportionally-spaced fonts, with
variations that include boldfacing, italicizing, underlining, and
outlining

e straight lines of any length, width, and pattern

= a variety of shapes, including rectangles, rounded-corner rectangles,
circles and ovals, and polygons, all either outlined and hollow or
filled in with a pattern

= arcs of ovals, or wedge-shaped sections filled in with a pattern

any other arbitrary shape or collection of shapes

= a picture composed of any combination of the above, drawn with just
a single procedure call

QuickDraw also has some other abilities that you won”t find in many other graphics
packages. These abilities take care of most of the “housekeeping”-the trivial but
time-consuming overhead that’s necessary to keep things in order. They include:

e The ability to define many distinct “ports” on the screen. Each port
has its own complete drawing environment—its own coordinate system,
drawing location, character set, location on the screen, and so on.
You can easily switch from one drawing port to another.

< Full and complete “clipping” to arbitrary areas, so that drawing will
occur only where you want. It”’s like an electronic coloring book that
won’t let you color outside the lines. You don”’t have to worry about
accidentally drawing over something else on the screen, or drawing off
the screen and destroying memory.

= Off-screen drawing. Anything you can draw on the screen, you can also
draw into an off-screen buffer, so you can prepare an image for an
output device without disturbing the screen, or you can prepare a
picture and move it onto the screen very quickly.

And QuickDraw lives up to its name: It’s very fast. The speed and responsiveness of
the Macintosh user interface are due primarily to the speed of QuickDraw. You can do
good-quality animation, fast interactive graphics, and complex yet speedy text
displays using the full features of QuickDraw. This means you don’t have to bypass the
general-purpose QuickDraw routines by writing a lot of special routines to improve
speed.

In addition to its routines and data types, QuickDraw provides global variables that
you can use from your Pascal program. For example, there’s a variable named thePort
that points to the current drawing port.

Assembly-language note: See the discussion of InitGraf in the ““QuickDraw
Routines” section for details on how to access the
QuickDraw global variables from assembly language.

In conjunction with the Font Manager, QuickDraw supports font families, fractional
character widths, and the disabling of font scaling; these features are described in
the Font Manager chapter section.

The 128K ROM version of QuickDraw supports all eight transfer modes for text drawing,
instead of just srcOr, srcBic, and scrXor.

The size of a picture is a long word with a range of over four gigabytes. To get the

SpInside Macintosh -- May 1992 -- 96 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

size of a picture, use GetHandleSize instead of looking at the picSize field, which
for compatibility contains the low 16 bits of the real size. Old code will work fine
for pictures up to 32767 bytes. To check whether you have run out of memory during
picture creation, test EmptyRect(picFrame); it returns TRUE if you have.

The following bugs have been fixed in the 128K ROM:

= RectlnRgn used to return TRUE occasionally when the rectangle intersected
the region’s enclosing rectangle but not the actual region.

= SectRgn, DiffRgn, UnionRgn, XorRgn, and FrameRgn used to cause a stack
overflow for regions with more than 25 rectangles in one scan line.

= PtToAngle didn”t work correctly when the angle was 90 and the aspect
ratio was a power of two.

e In some cases where the CopyBits source bitmap overlapped its destination,
the transfer would destroy the source bitmap before it was used.

e If you tried to draw a long piece of shadowed text with a tall font,
QuickDraw would cause a stack overflow if there wasn’t enough stack
space for the required off-screen buffer. Now it detects the potential
stack overflow and recurses on the left and right halves of the text.

= DrawText did not work correctly in pictures if the character count
was greater than 255.

The original QuickDraw described in this chapter has been expanded in two significant
areas: color capabilities with Color QuickDraw, which gives each pixel color
information, and direct RGB colors with 32-Bit QuickDraw, where every pixel can
contain a full RGB record with up to eight bits per component. Refer to the Color
QuickDraw chapter and the 32-Bit QuickDraw documentation for more details on both of
these enhancements to QuickDraw.

THE MATHEMATICAL FOUNDATION OF QUICKDRAW

To create graphics that are both precise and pretty requires not supercharged features
but a firm mathematical foundation for the features you have. If the mathematics that
underlie a graphics package are imprecise or fuzzy, the graphics will be, too.
QuickDraw defines some clear mathematical constructs that are widely used in its
procedures, functions, and data types: the coordinate plane, the point, the
rectangle, and the region.

The Coordinate Plane

All information about location or movement is given to QuickDraw in terms of
coordinates on a plane. The coordinate plane is a two-dimensional grid, as illustrated
in Figure 2.

Note the following features of the QuickDraw coordinate plane:

< All grid coordinates are integers (in the range —32767 to 32767).
< All grid lines are infinitely thin.

ee<Click on the Illustration button, and refer to Figure 2.eee
Figure 2-The Coordinate Plane

These concepts are important. First, they mean that the QuickDraw plane is finite, not
infinite (although it’s very large). Second, they mean that all elements represented
on the coordinate plane are mathematically pure. Mathematical calculations using
integer arithmetic will produce intuitively correct results. ITf you keep in mind that
grid lines are infinitely thin,

you’ll never have “endpoint paranoia”-the confusion that results from not knowing
whether that last dot is included in the line.

SpInside Macintosh -- May 1992 -- 97 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Points

There are 4,294,836,224 unique points on the coordinate plane. Each point is at the
intersection of a horizontal grid line and a vertical grid line. As the grid lines are
infinitely thin, so a point is infinitely small. OF course, there are many more points
on this grid than there are dots on the Macintosh screen: When using QuickDraw you
associate small parts of the grid with areas on the screen, so that you aren’t bound
into an arbitrary, limited coordinate system.

The coordinate origin (0,0) is in the middle of the grid. Horizontal coordinates
increase as you move from left to right, and vertical coordinates increase as you move
from top to bottom. This is the way both a TV screen and a page of English text are
scanned: from the top left to the bottom right.

Figure 3 shows the relationship between points, grid lines, and pixels, the physical
dots on the screen. (Pixels correspond to bits in memory, as described in the next
section.)

You can store the coordinates of a point into a Pascal variable of type Point, defined
by QuickDraw as a record of two integers:

TYPE VHSelect = (v,h);
Point = RECORD CASE INTEGER OF
O: (v: INTEGER: {vertical coordinate}

h: INTEGER); {horizontal coordinate}
1: (vh: ARRAY[VHSelect] OF INTEGER)
END;

ee<Click on the Illustration button, and refer to Figure 3.eee

Figure 3-Points and Pixels

The variant part of this record lets you access the vertical and horizontal
coordinates of a point either individually or as an array. For example, if the

variable goodPt is declared to be of type Point, the following will all refer to the
coordinates of the point:

goodPt.v goodPt.h
goodPt._vh[V] goodPt._vh[h]
Rectangles

Any two points can define the top left and bottom right corners of a rectangle. As
these points are infinitely small, the borders of the rectangle are infinitely thin
(see Figure 4).

ee<Click on the lllustration button, and refer to Figure 4.ee~
Figure 4-A Rectangle

Rectangles are used to define active areas on the screen, to assign coordinate systems
to graphic entities, and to specify the locations and sizes for various drawing
commands. QuickDraw also allows you to perform many mathematical calculations on
rectangles—changing their sizes, shifting them around, and so on.

Note: Remember that rectangles, like points, are mathematical concepts
that have no direct representation on the screen. The association
between these conceptual elements and their physical representations
is made by the BitMap data type, described in the following section.

The data type for rectangles is called Rect, and consists of four integers or two
points:

SpInside Macintosh -- May 1992 -- 98 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

TYPE Rect = RECORD CASE INTEGER OF
0: (top: INTEGER;
left: INTEGER;
bottom: INTEGER;
right: INTEGER) ;
1: (topLeft: Point;
botRight: Point)
END;

Again, the record variant allows you to access a variable of type Rect either as four
boundary coordinates or as two diagonally opposite corner points. Combined with the
record variant for points, all of the following references to the rectangle named
aRect are legal:

aRect {type Rect}

aRect.toplLeft aRect.botRight {type Point}

aRect._top aRect. left {type INTEGER}
aRect.toplLeft.v aRect.topLeft.h {type INTEGER}
aRect.toplLeft.vh[Vv] aRect. topLeft.vh[h] {type INTEGER}
aRect.bottom aRect.right {type INTEGER}
aRect.botRight.v aRect.botRight.h {type INTEGER}

aRect.botRight._vh[Vv] aRect.botRight._vh[h] {type INTEGER}

Note: If the bottom coordinate of a rectangle is equal to or less than
the top, or the right coordinate is equal to or less than the left,
the rectangle is an empty rectangle (that is, one that contains no bits).

Regions

Unlike most graphics packages that can manipulate only simple geometric structures
(usually rectilinear, at that), QuickDraw has the ability to gather an arbitrary set
of spatially coherent points into a structure called a region, and perform complex yet
rapid manipulations and calculations on such structures. Regions not only make your
programs simpler and faster, but will let you perform operations that would otherwise
be nearly impossible.

You define a region by calling routines that draw lines and shapes (even other
regions). The outline of a region should be one or more closed loops. A region can be
concave or convex, can consist of one area or many disjoint areas, and can even have
“holes” in the middle. In Figure 5, the region on the left has a hole in the middle,
and the region on the right consists of two disjoint areas.

ee«Click on the Illustration button, and refer to Figure 5.eee
Figure 5-Regions

The data structure for a region consists of two Fixed-length fields followed by a
variable-length field:

TYPE Region = RECORD
rgnSize: INTEGER; {size in bytes}

rgnBBox: Rect; {enclosing rectangle}
{more data if not rectangular}
END;

The rgnSize field contains the size, in bytes, of the region variable. The maximum
size of a region is 32K bytes. The rgnBBox field is a rectangle that completely
encloses the region.

The simplest region is a rectangle. In this case, the rgnBBox field defines the entire

SpInside Macintosh -- May 1992 -- 99 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

region, and there’s no optional region data. For rectangular regions (or empty
regions), the rgnSize field contains 10.

The region definition data for nonrectangular regions is stored in a compact way that
allows for highly efficient access by QuickDraw routines.

All regions are accessed through handles:

TYPE RgnPtr
RgnHandle

~Region;
"RgnPtr;

Many calculations can be performed on regions. A region can be “expanded” or

“shrunk™ and, given any two regions, QuickDraw can find their union, intersection,
difference, and exclusive-OR; it can also determine whether a given point intersects a
region, and so on.

GRAPHIC ENTITIES

Points, rectangles, and regions are all mathematical models rather than actual graphic
elements—they’re data types that QuickDraw uses for drawing, but they don’t actually
appear on the screen. Some entities that do have a direct graphic interpretation are
the bit image, bit map, pattern, and cursor. This section describes these graphic
entities and relates them to the mathematical constructs described above.

Bit Images

A bit image is a collection of bits in memory that have a rectilinear representation.
Take a collection of words in memory and lay them end to end so that bit 15 of the
lowest-numbered word is on the left and bit 0 of the highest-numbered word is on the
far right. Then take this array of bits and divide it, on word boundaries, into a
number of equal-size rows. Stack these rows vertically so that the first row is on the
top and the last row is on the bottom. The result is a matrix like the one shown In
Figure 6-rows and columns of bits, with each row containing the same number of bytes.
The number of bytes in each row of the bit image is called the row width of that
image. A bit image can be any length that’s a multiple of the row width.

ee<Click on the lllustration button, and refer to Figure 6.ee~
Figure 6-A Bit Image

The screen itself is one large visible bit image. On a Macintosh 128K or 512K, for
example, the screen is a 342-by-512 bit image, with a row width of 64 bytes. These
21,888 bytes of memory are displayed as a matrix of 175,104 pixels on the screen, each
bit corresponding to one pixel. 1T a bit’s value is 0, its pixel is white; if the
bit’s value is 1, the pixel is black.

Warning: The numbers given here apply only to the Macintosh 128K and 512K
systems. To allow for your application running on any version of
the Macintosh, you should never use explicit numbers for screen
dimensions. The QuickDraw global variable screenBits (a bit map,
described below) gives you access to a rectangle whose dimensions
are those of the main screen, whatever version of the Macintosh is
being used.

On a Macintosh 128K or 512K, each pixel on the screen is square, and there are 72
pixels per inch in each direction. On an unmodified Macintosh XL, each pixel is one
and a half times taller than it is wide, meaning a rectangle 30 pixels wide by 20 tall
looks square; there are 90 pixels per inch horizontally, and 60 per inch vertically. A
Macintosh XL may be modified to have square pixels. You can get the the screen
resolution by calling the Toolbox Utility procedure ScreenRes.

SpInside Macintosh -- May 1992 -- 100 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Note: The values given for pixels per inch may not be exactly the measurement
on the screen, but they’re the values you should use when calculating
the size of printed output.

Note: Since each pixel on the screen represents one bit in a bit image,
wherever this chapter says “bit”, you can substitute “pixel” if the
bit image is the screen. Likewise, this chapter often refers to pixels
on the screen where the discussion applies equally to bits in an off-
screen bit image.

Bit Maps

A bit map in QuickDraw is a data structure that defines a physical bit image in terms
of the coordinate plane. A bit map has three parts: a pointer to a bit image, the row
width of that image, and a boundary rectangle that gives the bit map both its
dimensions and a coordinate system.

There can be several bit maps pointing to the same bit image, each imposing a
different coordinate system on it. This important feature is explained in
“Coordinates in GrafPorts”, below.

As shown in Figure 7, the structure of a bit map is as follows:

TYPE BitMap = RECORD

baseAddr: Ptr; {pointer to bit image}

rowBytes: INTEGER; {row width}

bounds: Rect {boundary rectangle}
END;

ee«Click on the lllustration button, and refer to Figure 7.eee
Figure 7-A Bit Map

BaseAddr is a pointer to the beginning of the bit image in memory. RowBytes is the row
width in bytes. Both of these must always be even: A bit map must always begin on a
word boundary and contain an integral number of words in each row.

The bounds field is the bit map’s boundary rectangle, which both encloses the active
area of the bit image and imposes a coordinate system on it. The top left corner of
the boundary rectangle is aligned around the first bit in the bit image.

The relationship between the boundary rectangle and the bit image in a bit map is
simple yet very important. First, some general rules:

< Bits in a bit image fall between points on the coordinate plane.
= A rectangle that is H points wide and V points tall encloses
exactly (H-1)*(V-1) bits.

The coordinate system assigns integer values to the lines that border and separate
bits, not to the bit positions themselves. For example, if a bit map is assigned the
boundary rectangle with corners (10,-8) and (34,8), the bottom right bit in the image
will be between horizontal coordinates 33 and 34, and between vertical coordinates 7
and 8 (see Figure 8).

ee<Click on the lllustration button, and refer to Figure 8.eee~
Figure 8-Coordinates and Bit Maps

The width of the boundary rectangle determines how many bits of one row are logically
owned by the bit map. This width must not exceed the number of bits in each row of the
bit image. The height of the boundary rectangle determines how many rows of the image
are logically owned by the bit map. The number of rows enclosed by the boundary
rectangle must not exceed the number of rows in the bit image.

Splnside Macintosh -- May 1992 -- 101 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Normally, the boundary rectangle completely encloses the bit image. If the rectangle
is smaller than the dimensions of the image, the least significant bits in each row,
as well as the last rows in the image, aren’t affected by any operations on the bit
map -

There’s a QuickDraw global variable, named screenBits, that contains a bit map
corresponding to the screen of the Macintosh being used. Wherever your program needs
the exact dimensions of the screen, it should get them from the boundary rectangle of
this variable.

Patterns

A pattern is a 64-bit image, organized as an 8-by-8-bit square, that’s used to define
a repeating design (such as stripes) or tone (such as gray). Patterns can be used to
draw lines and shapes or to fill areas on the screen.

When a pattern is drawn, it’s aligned so that adjacent areas of the same pattern iIn
the same graphics port will blend with it into a continuous, coordinated pattern.
QuickDraw provides predefined patterns in global variables named white, black, gray,
ItGray, and dkGray. Any other 64-bit variable or constant can also be used as a
pattern. The data type definition for a pattern is as follows:

TYPE Pattern = PACKED ARRAY[O..7] OF 0..255;

The row width of a pattern is one byte.

Cursors

A cursor is a small image that appears on the screen and is controlled by the mouse.
(It appears only on the screen, and never in an off-screen bit image.)

Note: Macintosh user manuals call this image a “pointer”, since it points
to a location on the screen. To avoid confusion with other meanings
of “pointer” in Inside Macintosh, we use the alternate term “cursor”.

A cursor is defined as a 256-bit image, a 16-by-16-bit square. The row width of a
cursor is two bytes. Figure 9 illustrates four cursors.

ee<Click on the Illustration button, and refer to Figure 9.eee
Figure 9-Cursors
A cursor has three fields: a 16-word data field that contains the image itself, a 16-

word mask Field that contains information about the screen appearance of each bit of
the cursor, and a hotSpot point that aligns the cursor with the mouse location.

TYPE Bitsl6 = ARRAY[O..15] OF INTECER;
Cursor = RECORD
data: Bitsl6; {cursor image}
mask : Bitsl16; {cursor mask}
hotSpot: Point {point aligned with mouse}
END;

The data for the cursor must begin on a word boundary.

The cursor appears on the screen as a 16-by-16-bit square. The appearance of each bit
of the square is determined by the corresponding bits in the data and mask and, if the
mask bit is 0, by the pixel “under” the cursor (the pixel already on the screen in the
same position as this bit of the cursor):

Data Mask Resulting pixel on screen

Splnside Macintosh -- May 1992 -- 102 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

White

Black

Same as pixel under cursor
Inverse of pixel under cursor

PORFRO
OOrPE

Notice that if all mask bits are 0, the cursor is completely transparent, in that the
image under the cursor can still be viewed: Pixels under the white part of the cursor
appear unchanged, while under the black part of the cursor, black pixels show through
as white.

The hotSpot aligns a point (not a bit) in the image with the mouse location. Imagine
the rectangle with corners (0,0) and (16,16) framing the image, as in each of the
examples In Figure 9; the hotSpot is defined in this coordinate system. A hotSpot of
(0,0) is at the top left of the image. For the arrow in Figure 9 to point to the mouse
location, (1,1) would be its hotSpot. A hotSpot of (8,8) is in the exact center of the
image; the center of the plus sign or circle in Figure 9 would coincide with the mouse
location if (8,8) were the hotSpot for that cursor. Similarly, the hotSpot for the
pointing hand would be

(16,9).

Whenever you move the mouse, the low-level interrupt-driven mouse routines move the
cursor’s hotSpot to be aligned with the new mouse location.

QuickDraw supplies a predefined cursor in the global variable named arrow; this is the
standard arrow cursor (illustrated in Figure 9).

Graphic Entities as Resources

You can create cursors and patterns in your program code, but it’s usually simpler and
more convenient to store them in a resource file and read them in when you need them.
Standard cursors and patterns are available not only through the global variables
provided by QuickDraw, but also as system resources stored in the system resource
file. QuickDraw itself operates independently of the Resource Manager, so it doesn’t
contain routines for accessing graphics-related resources; instead, these routines are
included in the Toolbox Utilities (see the Toolbox Utilities chapter for more
information).

Besides patterns and cursors, two other graphic entities that may be stored in
resource files (and accessed via Toolbox Utility routines) are a QuickDraw picture,
described later in this chapter, and an icon, a 32-by-32 bit image that’s used to
graphically represent an object, concept, or message.

THE DRAWING ENVIRONMENT: GRAFPORT

A grafPort is a complete drawing environment that defines where and how graphic
operations will take place. You can have many grafPorts open at once, and each one
will have its own coordinate system, drawing pattern, background pattern, pen size and
location, character font and style, and bit map in which drawing takes place. You can
instantly switch from one port to another. GrafPorts are the structures upon which a
program builds windows, which are fundamental to the Macintosh “‘overlapping windows”
user interface. Besides being used for windows on the screen, grafPorts are used for
printing and for off-screen drawing.

A grafPort is defined as follows:

TYPE GrafPtr = ~GrafPort;
GrafPort = RECORD
device: INTEGER; {device-specific information}
portBits: BitMap; {grafPort®s bit map}
portRect: Rect; {grafPort"s rectangle}

SpInside Macintosh -- May 1992 -- 103 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

VisRgn: RgnHandle; <{visible region}
clipRgn: RgnHandle; {clipping region}
bkPat: Pattern; {background pattern}
fillPat: Pattern; {fill pattern}
pnLoc: Point; {pen location}
pnSize: Point; {pen size}
pnMode: INTEGER; {pen*s transfer mode}
pnPat: Pattern; {pen pattern}
pnVis: INTEGER; {pen visibility}
txFont: INTEGER; {font number for text}
txFace: Style; {text"s character style}
txMode: INTEGER; {text"s transfer mode}
txSize: INTEGER; {font size for text}
spExtra: Fixed; {extra space}
fgColor: LONGINT; {foreground color}
bkColor: LONGINT; {background color}
colrBit: INTEGER; {color bit}
patStretch: INTEGER; {used internally}
picSave: Handle; {picture being saved}
rgnSave: Handle; {region being saved}
polySave: Handle; {polygon being saved}
grafProcs: QDProcsPtr {low-level drawing routines}
END;

Note that picSave is a Handle used internally by QuickDraw while it is saving a
picture, and rgnSave and polySave are used by QuickDraw as flags; they are set to “1”
when the corresponding action is taking place.

All QuickDraw operations refer to grafPorts via grafPtrs. (For historical reasons,
grafPort is one of the few objects in the Macintosh system software that’s referred to
by a pointer rather than a handle.)

Warning: You can access all fields and subfields of a grafPort normally,
but you should not store new values directly into them. QuickDraw
has routines for altering all fields of a grafPort, and using
these routines ensures that changing a grafPort produces no
unusual side effects.

The device field of a grafPort contains device-specific information that’s used by the
Font Manager to achieve the best possible results when drawing text in the grafPort.
There may be physical differences in the same logical font for different output
devices, to ensure the highest-quality printing on the device being used. The default
value of the device field is 0, for best results on output to the screen. For more
information, see the Font Manager chapter.

The portBits field is the bit map that points to the bit image to be used by the
grafPort. The default bit map uses the entire screen as its bit image. The bit map may
be changed to indicate a different structure in memory: All graphics routines work in
exactly the same way regardless of whether their effects are visible on the screen. A
program can, for example, prepare an image to be printed on a printer without ever
displaying the image on the screen, or develop a picture in an off-screen bit map
before transferring it to the screen. The portBits.bounds rectangle determines the
coordinate system of the grafPort; all other coordinates in the grafPort are expressed
in this system.

The portRect field is a rectangle that defines a subset of the bit map that will be
used for drawing: All drawing done by the application occurs inside the portRect. Its
coordinates are in the coordinate system defined by the portBits_bounds rectangle. The
portRect usually falls within the portBits.bounds rectangle, but it’s not required to
do so. The portRect usually defines the “writable” interior area of a window,
document, or other object on the screen.

The visRgn field is manipulated by the Window Manager; you will normally never change
a grafPort’s viskRgn. It indicates the region of the grafPort that’s actually visible
on the screen, that is, the part of the window that’s not covered by other windows.
For example, if you move one window in front of another, the Window Manager logically

SpInside Macintosh -- May 1992 -- 104 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

removes the area of overlap from the visRgn of the window In back. When you draw into
the back window, whatever’s being drawn is clipped to the visRgn so that it doesn’t
run over onto the front window. The default visRgn is set to the portRect.

The clipRgn is the grafPort’s clipping region, an arbitrary region that you can use to
limit drawing to any region within the portRect. If, for example, you want to draw a
half circle on the screen, you can set the clipRgn to half the square that would
enclose the whole circle, and then draw the whole circle. Only the half within the
clipRgn will actually be drawn in the grafPort. The default clipRgn is set arbitrarily
large, you have full control over its setting; as a matter of recommended programming
practice, it is advisable to make the default clipRgn rectangle smaller.

Figure 10 illustrates a typical bit map (as defined by portBits), portRect, visRgn,
and clipRgn.

ee<Click on the Illustration button, and refer to Figure 10.eee
Figure 10-GrafPort Regions

The bkPat and fillPat fields of a grafPort contain patterns used by certain QuickDraw
routines. BkPat is the “background” pattern that’s used when an area is erased or when
bits are scrolled out of it. When asked to fill an area with a specified pattern,
QuickDraw stores the given pattern in the FillPat field and then calls a low-level
drawing routine that gets the pattern from that field. The various graphic operations
are discussed in detail later in the descriptions of individual QuickDraw routines.

Of the next ten fields, the first five determine characteristics of the graphics pen
and the last five determine characteristics of any text that may be drawn; these are
described in separate sections below.

The fgColor, bkColor, and colrBit fields contain values related to drawing in color.
FgColor is the grafPort’s foreground color and bkColor is its background color.
ColrBit tells the color imaging software which plane of the color picture to draw
into. For more information, see “Drawing in Color” in the section “General Discussion
of Drawing”.

The patStretch field iIs used during output to a printer to expand patterns if
necessary. The application should not change its value.

The picSave, rgnSave, and polySave fields reflect the state of picture, region, and
polygon definition, respectively. The application shouldn’t be concerned about exactly
what information the handle, if any, leads to; you may, however, save the current
value of rgnSave, set the field to NIL to disable the region definition, and later
restore it to the saved value to resume the region definition. The picSave and
polySave fields work similarly for pictures and polygons.

Finally, the grafProcs field may point to a special data structure that the
application stores into if it wants to customize QuickDraw drawing routines or use
QuickDraw in other advanced, highly specialized ways (see “Customizing QuickDraw
Operations™). If grafProcs is NIL, QuickDraw responds in the standard ways described
in this chapter.

Pen Characteristics

The pnLoc, pnSize, pnMode, pnPat, and pnVis fields of a grafPort deal with the
graphics “pen”. Each grafPort has one and only one such pen, which is used for drawing
lines, shapes, and text. The pen has four characteristics: a location, a size (height
and width), a drawing mode, and a drawing pattern (see Figure

11).

e=<Click on the lllustration button, and refer to Figure 11.eee

Figure 11-A Graphics Pen

SpInside Macintosh -- May 1992 -- 105 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

The pnLoc field specifies the point where QuickDraw will begin drawing the next line,
shape, or character. It can be anywhere on the coordinate plane: There are no
restrictions on the movement or placement of the pen. Remember that the pen location
is a point in the grafPort’s coordinate system, not a pixel In a bit image. The top
left corner of the pen is at the pen location; the pen hangs below and to the right of
this point.

The pen is rectangular in shape, and its width and height are specified by pnSize. The
default size is a 1l-by-1-bit square; the width and height can range from (0,0) to
(30000,30000). If either the pen width or the pen height is less than 1, the pen will
not draw.

The pnMode and pnPat fields of a grafPort determine how the bits under the pen are
affected when lines or shapes are drawn. The pnPat is a pattern that’s used like the
“ink” in the pen. This pattern, like all other patterns drawn in the grafPort, is
always aligned with the port’s coordinate system: The top left corner of the pattern
is aligned with the top left corner of the portRect, so that adjacent areas of the
same pattern will blend into a continuous, coordinated pattern.

The pnMode field determines how the pen pattern is to affect what’s already in the bit
image when lines or shapes are drawn. When the pen draws, QuickDraw first determines
what bits in the bit image will be affected and finds their corresponding bits in the
pattern. It then does a bit-by-bit comparison based on the pen mode, which specifies
one of eight Boolean operations to perform. The resulting bit is stored into its
proper place in the bit image. The pen modes are described under “Transfer Modes” in
the section “General Discussion of Drawing”.

The pnVis field determines the pen’s visibility, that is, whether it draws on the
screen. For more information, see the descriptions of HidePen and ShowPen under “Pen
and Line-Drawing Routines™ in the “QuickDraw Routines” section.

Text Characteristics

The txFont, txFace, txMode, txSize, and spExtra fields of a grafPort determine how
text will be drawn—the font, style, and size of characters and how they will be placed
in the bit image. QuickDraw can draw characters as quickly and easily as it draws
lines and shapes, and in many prepared fonts. Font means the complete set of
characters of one typeface. The characters may be drawn in any size and character
style (that is, with stylistic variations such as bold, italic, and underline). Figure
12 shows two characters drawn by QuickDraw and some terms associated with drawing
text.

e=<Click on the lllustration button, and refer to Figure 12.eee
Figure 12—QuickDraw Characters
Text is drawn with the base line positioned at the pen location.

The txFont Field is a font number that identifies the character font to be used in the
grafPort. The font number O represents the system font. For more information about the
system font, the other font numbers recognized by the Font Manager, and the
construction, layout, and loading of fonts, see the Font Manager chapter.

A character font is defined as a collection of images that make up the individual
characters of the font. The characters can be of unequal widths, and they’re not
restricted to their “cells”: The lower curl of a lowercase j, for example, can
stretch back under the previous character (typographers call this kerning). A font can
consist of up to 255 distinct characters, yet not all characters need to be defined in
a single font. In addition, each font contains a missing symbol to be drawn in case of
a request to draw a character that’s missing from the font.

The txFace field controls the character style of the text with values from the set
defined by the Style data type:

SpInside Macintosh -- May 1992 -- 106 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

TYPE Styleltem
Style

Assembly-language note: In assembly language, this set is stored as a word
whose low-order byte contains bits representing the
style. The bit numbers are specified by the following
global constants:

(bold, italic,underline,outline,shadow,condense,extend);
SET OF Styleltem;

boldBit -EQU (0]
italicBit -EQU 1
ulineBit -EQU 2
outlineBit -EQU 3
shadowBit -EQU 5
extendBit -EQU 6

If all bits are 0, it represents the plain character
style.

You can apply stylistic variations either alone or in combination; Figure 13
illustrates some as applied to the Geneva font. Most combinations usually look good
only for large font sizes.

ee«Click on the lllustration button, and refer to Figure 13.eee
Figure 13-Stylistic Variations

If you specify bold, each character is repeatedly drawn one bit to the right an
appropriate number of times for extra thickness.

Italic adds an italic slant to the characters. Character bits above the base line are
skewed right; bits below the base line are skewed left.

Underline draws a line below the base line of the characters. If part of a character
descends below the base line (as “y” in Figure 13), the underline
isn’t drawn through the pixel on either side of the descending part.

Outline makes a hollow, outlined character rather than a solid one. Shadow also makes
an outlined character, but the outline is thickened below and to the right of the
character to achieve the effect of a shadow. If you specify bold along with outline or
shadow, the hollow part of the character is widened.

Condense and extend affect the horizontal distance between all characters, including
spaces. Condense decreases the distance between characters and extend increases it, by
an amount that the Font Manager determines is appropriate.

The t>xMode field controls the way characters are placed in the bit image. It functions
much like a pnMode: When a character is drawn, QuickDraw determines which bits in the
bit image will be affected, does a bit-by-bit comparison based on the mode, and stores
the resulting bits into the bit image. These modes are described under “Transfer
Modes™” in the section “General Discussion of Drawing”. Only three of them-srcOr,
srcXor, and srcBic—should be used for drawing text.

Note: |If you use scrCopy, some extra blank space will be appended at the
end of the text.

The t=<Size field specifies the font size in points (where “point” is a typographical
term meaning approximately 1/72 inch). Any size from 1 to 127 points may be specified.
If the Font Manager doesn’t have the font in a specified size, it will scale a size it
does have as necessary to produce the size desired. A value of O in this field
represents the system font size (12 points).

Finally, the spkExtra field is useful when a line of characters is to be drawn
jJustified such that it’s aligned with both a left and a right margin (sometimes called
“full justification). SpExtra contains a fixed-point number equal to the average
number of pixels by which each space character should be widened to fill out the line.
The Fixed data type is described in the Macintosh Memory Management: An Introduction

SpInside Macintosh -- May 1992 -- 107 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

chapter.

COORDINATES IN GRAFPORTS

Each grafPort has its own local coordinate system. All fields in the grafPort are
expressed in these coordinates, and all calculations and actions performed in
QuickDraw use the local coordinate system of the currently selected port.

Two things are important to remember:

= Each grafPort maps a portion of the coordinate plane into a similarly-
sized portion of a bit image.
< The portBits.bounds rectangle defines the local coordinates for a grafPort.

The top left corner of portBits.bounds is always aligned around the first bit in the
bit image; the coordinates of that corner “anchor” a point on the grid to that bit in
the bit image. This forms a common reference point for multiple grafPorts that use the
same bit image (such as the screen); given a portBits.bounds rectangle for each port,
you know that their top left corners coincide.

The relationship between the portBits.bounds and portRect rectangles is very
important: The portBits.bounds rectangle establishes a coordinate system for the
port, and the portRect rectangle indicates the section of the coordinate plane (and
thus the bit image) that will be used for drawing. The portRect usually falls inside
the portBits.bounds rectangle, but it’s not required to do so.

When a new grafPort is created, its bit map is set to point to the entire screen, and
both the portBits.bounds and the portRect are set to rectangles enclosing the screen.
The point (0,0) corresponds to the screen’s top left corner.

You can redefine the local coordinates of the top left corner of the grafPort’s
portRect, using the SetOrigin procedure. This offsets the coordinates of the
grafPort’s portBits.bounds rectangle, recalculating the coordinates of all points in
the grafPort to be relative to the new corner coordinates. For example, consider these
procedure calls:

SetPort(gamePort);
SetOrigin(90,80)

The call to SetPort sets the current grafPort to gamePort; the call to SetOrigin
changes the local coordinates of the top left corner of that port’s portRect to
(90,80) (see Figure 14).

ee«Click on the lllustration button, and refer to Figure 14_eee
Figure 14-Changing Local Coordinates
This offsets the coordinates of the following elements:

gamePort”_portBits.bounds
gamePort”™.portRect
gamePort™.visRgn

These three elements are always kept “in sync”.

Notice that when the local coordinates of a grafPort are offset, the grafPort’s
clipRgn and pen location are not offset. A good way to think of it is that the port’s
structure “sticks” to the screen, while the document in the grafPort

(along with the pen and clipRgn) “sticks” to the coordinate system. For example, iIn
Figure 14, before SetOrigin, the visRgn and clipRgn are the same as the portRect.
After the SetOrigin call, the locations of portBits.bounds, portRect, and visRgn do
not change on the screen; their coordinates are simply offset. As always, the top left
corner of portBits.bounds remains “anchored” around the first bit in the bit image

SpInside Macintosh -- May 1992 -- 108 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

(the first pixel on the screen); the image on the screen doesn’t move as a result of
SetOrigin. However, the pen location and clipRgn do move on the screen; the top left
corner of the clipRgn is still

(100,100), but this location has moved down and to the right, and the pen has
similarly moved.

If you’re moving, comparing, or otherwise dealing with mathematical items in different
grafPorts (for example, finding the intersection of two regions in two different
grafPorts), you must adjust to a common coordinate system before you perform the
operation. A QuickDraw procedure, LocalToGlobal, lets you convert a point’s local
coordinates to a global coordinate system where the top left corner of the bit image
is (0,0); by converting the various local coordinates to global coordinates, you can
compare and mix them with confidence. For more information, see the description of
LocaltoGlobal under “Calculations with Points” in the “QuickDraw Routines” section.

GENERAL DISCUSSION OF DRAWING

Drawing occurs:

< always inside a grafPort, in the bit image and coordinate system
defined by the grafPort’s bit map

< always within the intersection of the grafPort’s portBits.bounds
and portRect, and clipped to its visRgn and clipRgn

= always at the grafPort’s pen location

< usually with the grafPort’s pen size, pattern, and mode

With QuickDraw routines, you can draw lines, shapes, and text. Shapes include
rectangles, ovals, rounded-corner rectangles, wedge-shaped sections of ovals, regions,
and polygons.

Lines are defined by two points: the current pen location and a destination location.
When drawing a line, QuickDraw moves the top left corner of the pen along the
mathematical trajectory from the current location to the destination. The pen hangs
below and to the right of the trajectory (see Figure 15).

e=<Click on the lllustration button, and refer to Figure 15.eee
Figure 15-Drawing Lines

Note: No mathematical element (such as the pen location) is ever affected
by clipping; clipping only determines what appears where in the bit
image. If you draw a line to a location outside the intersection of
the portRect, visRgn and clipRgn, the pen location will move there,
but only the portion of the line that’s iInside that area will actually
be drawn. This is true for all drawing routines.

Rectangles, ovals, and rounded-corner rectangles are defined by two corner points. The
shapes always appear inside the mathematical rectangle defined by the two points. A
region is defined in a more complex manner, but also appears only within the rectangle
enclosing it. Remember, these enclosing rectangles have infinitely thin borders and
are not visible on the screen.

As illustrated in Figure 16, shapes may be drawn either solid (filled in with a
pattern) or framed (outlined and hollow).

ee«Click on the lllustration button, and refer to Figure 16.eee

Figure 16-Solid Shapes and Framed Shapes

In the case of framed shapes, the outline appears completely within the enclosing
rectangle—-with one exception—and the vertical and horizontal thickness of the outline

is determined by the pen size. The exception is polygons, as discussed in the section
“Pictures and Polygons™ below.

SpInside Macintosh -- May 1992 -- 109 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

The pen pattern is used to fill in the bits that are affected by the drawing
operation. The pen mode defines how those bits are to be affected by directing
QuickDraw to apply one of eight Boolean operations to the bits in the shape and the
corresponding pixels on the screen.

Text drawing doesn’t use the pnSize, pnPat, or pnMode, but it does use the pnLoc.
QuickDraw starts drawing each character from the current pen location, with the
character’s base line at the pen location. After a character is drawn, the pen moves
to the right to the location where it will draw the next character. No wraparound or
carriage return is performed automatically. Clipping of text is performed in exactly
the same manner as all other clipping in QuickDraw.

Transfer Modes

When lines or shapes are drawn, the pnMode field of the grafPort determines how the
drawing is to appear in the port’s bit image; similarly, the txMode field determines
how text is to appear. There’s also a QuickDraw procedure that transfers a bit image
from one bit map to another, and this procedure has a mode parameter that determines
the appearance of the result. In all these cases, the mode, called a transfer mode,
specifies one of eight Boolean operations: For each bit in the item to be drawn,
QuickDraw finds the corresponding bit in the destination bit map, performs the Boolean
operation on the pair of bits, and stores the resulting bit into the bit image.

There are two types of transfer mode:

= pattern transfer modes, for drawing lines or shapes with a pattern
= source transfer modes, for drawing text or transferring any bit
image between two bit maps

For each type of mode, there are four basic operations—Copy, Or, Xor, and Bic

(“bit clear”). The Copy operation simply replaces the pixels in the destination with
the pixels iIn the pattern or source, “painting” over the destination without regard
for what’s already there. The Or, Xor, and Bic operations leave the destination pixels
under the white part of the pattern or source unchanged, and differ in how they affect
the pixels under the black part: Or replaces those pixels with black pixels, thus
“overlaying” the destination with the black part of the pattern or source; Xor inverts
the pixels under the black part; and Bic erases them to white.

Each of the basic operations has a variant in which every pixel in the pattern or
source is inverted before the operation is performed, giving eight operations in all.
Each mode is defined by name as a constant in QuickDraw (see Figure 17).

ee<Click on the Illustration button, and refer to Figure 17.eee

Figure 17-Transfer Modes

Pattern Source Action on each pixel in destination:
transfer transfer If black pixel in IT white pixel in
mode mode pattern or source pattern or source
patCopy srcCopy Force black Force white

patOr srcOor Force black Leave alone
patXor srcxor Invert Leave alone
patBic srcBic Force white Leave alone
notPatCopy notSrcCopy Force white Force black
notPatOor notSrcOor Leave alone Force black
notPatXor notSrcXor Leave alone Invert

notPatBic notSrcBic Leave alone Force white

Drawing in Color

Splnside Macintosh -- May 1992 -- 110 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Your application can draw on color output devices by using QuickDraw procedures to set
the foreground color and the background color. Eight standard colors may be specified
with the following predefined constants:

CONST blackColor = 33;
whiteColor = 30;
redColor = 209;
greenColor = 329;
blueColor = 389;
cyanColor = 269;
magentaColor = 149;
yellowColor = 89;

Initially, the foreground color is blackColor and the background color is whiteColor.
If you specify a color other than whiteColor, it will appear as black on a black-and-
white output device.

To apply the table in the “Transfer Modes™” section above to drawing in color, make the
following translation: Where the table shows “Force black”, read

“Force foreground color”, and where it shows “Force white”, read “Force background
color”. The effect of inverting a color depends on the device being used.

Note: QuickDraw can support output devices that have up to 32 bits of color
information per pixel. A color picture may be thought of, then, as
having up to 32 planes. At any one time, QuickDraw draws into only
one of these planes. A QuickDraw routine called by the color-imaging
software specifies which plane.

eeeClick on the X-Ref button, and refer to Technical Note #73.eee

PICTURES AND POLYGONS

QuickDraw lets you save a sequence of drawing commands and “play them back™ later with
a single procedure call. There are two such mechanisms: one for drawing any picture to
scale in a destination rectangle that you specify, and another for drawing polygons in
all the ways you can draw other shapes in QuickDraw.

Pictures

A picture in QuickDraw is a transcript of calls to routines that draw something—
anything—in a bit image. Pictures make it easy for one program to draw something
defined in another program, with great flexibility and without knowing the details
about what’s being drawn.

For each picture you define, you specify a rectangle that surrounds it; this rectangle
is called the picture frame. When you later call the procedure that plays back the
saved picture, you supply a destination rectangle, and QuickDraw scales the picture so
that its frame is completely aligned with the destination rectangle. Thus, the picture
may be expanded or shrunk to fit its destination rectangle. For example, if the
picture is a circle inside a square picture frame, and the destination rectangle is
not square, the picture will be drawn as an oval.

Since a picture may include any sequence of drawing commands, its data structure is a
variable-length entity. It consists of two Fixed-length fields followed by a variable-
length field:

TYPE Picture = RECORD
picSize: INTEGER; {size in bytes}

picFrame: Rect; {picture frame}
{picture definition data}
END;

Splnside Macintosh -- May 1992 -- 111 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

The picSize field contains the size, In bytes, of the picture variable. The picFrame
field is the picture frame that surrounds the picture and gives a frame of reference
for scaling when the picture is played back. The rest of the structure contains a
compact representation of the drawing commands that define the picture.

All pictures are accessed through handles:

TYPE PicPtr
PicHandle

= "Picture;

= "PicPtr;

To define a picture, you call a QuickDraw function that returns a picHandle, and then
call the drawing routines that define the picture.

QuickDraw also allows you to intersperse picture comments with the definition of a
picture. These comments, which do not affect the picture’s appearance, may be used to
provide additional information about the picture when it’s played back. This is
especially valuable when pictures are transmitted from one application to another.
There are two standard types of comments which, like parentheses, serve to group
drawing commands together (such as all the commands that draw a particular part of a
picture):

CONST picLParen
picRParen

0;
1;

The application defining the picture can use these standard comments as well as
comments of its own design.

ee«Click on the X-Ref button, and refer to Technical Note #21, #91, & #154_eee

Polygons

Polygons are similar to pictures in that you define them by a sequence of calls to
QuickDraw routines. They’re also similar to other shapes that QuickDraw knows about,
since there’s a set of procedures for performing graphic operations and calculations
on them.

A polygon is simply any sequence of connected lines (see Figure 18). You define a
polygon by moving to the starting point of the polygon and drawing lines from there to
the next point, from that point to the next, and so on.

The data structure for a polygon consists of two fixed-length fields followed by a
variable-length array:

TYPE Polygon = RECORD

polySize: INTEGER; {size in bytes}
polyBBox: Rect; {enclosing rectangle}
polyPoints: ARRAY[O..0] OF Point

END;

ee<Click on the Illustration button, and refer to Figure 18.eee
Figure 18-Polygons

The polySize field contains the size, in bytes, of the polygon variable. The maximum
size of a polygon is 32K bytes. The polyBBox field is a rectangle that just encloses
the entire polygon. The polyPoints array expands as necessary to contain the points of
the polygon—the starting point followed by each successive point to which a line is
drawn.

Like pictures and regions, polygons are accessed through handles:

TYPE PolyPtr
PolyHandle

~Polygon;
~PolyPtr;

SpInside Macintosh -- May 1992 -- 112 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

To define a polygon, you call a routine that returns a polyHandle, and then call the
line-drawing routines that define the polygon.

Just as for other shapes that QuickDraw knows about, there’s a set of graphic
operations to draw polygons on the screen. QuickDraw draws a polygon by moving to the
starting point and then drawing lines to the remaining points in succession, just as
when the routines were called to define the polygon. In this sense it “plays back”
those routine calls. As a result, polygons are not treated exactly the same as other
QuickDraw shapes. For example, the procedure that frames a polygon draws outside the
actual boundary of the polygon, because QuickDraw line-drawing routines draw below and
to the right of the pen location. The procedures that fill a polygon with a pattern,
however, stay within the boundary of the polygon; if the polygon’s ending point isn’t
the same as its starting point, these procedures add a line between them to complete
the shape.

QuickDraw also scales a polygon differently from a similarly-shaped region if it’s
being drawn as part of a picture: When stretched, a slanted line is drawn more
smoothly if it’s part of a polygon rather than a region. You may find it helpful to
keep in mind the conceptual difference between polygons and regions: A polygon is
treated more as a continuous shape, a region more as a set of bits.

USING QUICKDRAW

Call the InitGraf procedure to initialize QuickDraw at the beginning of your program,
before initializing any other parts of the Toolbox.

When your application starts up, the cursor will be a wristwatch; the Finder sets it
to this to indicate that a lengthy operation is in progress. Call the InitCursor
procedure when the application is ready to respond to user input, to change the cursor
to the standard arrow. Each time through the main event loop, you should call
SetCursor to change the cursor as appropriate for its screen location.

All graphic operations are performed in grafPorts. Before a grafPort can be used, it
must be allocated and initialized with the OpenPort procedure. Normally, you don’t
call OpenPort yourself—in most cases your application will draw into a window you’ve
created with Window Manager routines, and these routines call OpenPort to create the
window’s grafPort. Likewise, a grafPort’s regions are disposed of with ClosePort, and
the grafPort itself is disposed of with the Memory Manager procedure DisposPtr—but
when you call the Window Manager to close or dispose of a window, it calls these
routines for you.

In an application that uses multiple windows, each is a separate grafPort. If your
application draws into more than one grafPort, you can call SetPort to set the
grafPort that you want to draw in. At times you may need to preserve the current
grafPort; you can do this by calling GetPort to save the current port, SetPort to set
the port you want to draw in, and then SetPort again when you need to restore the
previous port.

Each grafPort has its own local coordinate system. Some Toolbox routines return or
expect points that are expressed in a common, global coordinate system, while others
use local coordinates. For example, when the Event Manager reports an event, it gives
the mouse location in global coordinates; but when you call the Control Manager to
find out whether the user clicked in a control in one of your windows, you pass the
mouse location in local coordinates. The GlobalToLocal procedure lets you convert
global coordinates to local coordinates, and the LocalToGlobal procedure lets you do
the reverse.

The SetOrigin procedure will adjust a grafPort’s local coordinate system. If your
application performs scrolling, you’ll use ScrollRect to shift the bits of the image,
and then SetOrigin to readjust the coordinate system after this shift.

You can redefine a grafPort’s clipping region with the SetClip or ClipRect procedure.
Just as GetPort and SetPort are used to preserve the current grafPort, GetClip and

SpInside Macintosh -- May 1992 -- 113 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

SetClip are useful for saving the grafPort’s clipRgn while you temporarily perform
other clipping functions. This is useful, for example, when you want to reset the
clipRgn to redraw the newly displayed portion of a document that’s been scrolled.

When drawing text in a grafPort, you can set the font characteristics with TextFont,
TextFace, TextMode, and TextSize. CharWidth, StringWidth, or TextWidth will tell you
how much horizontal space the text will require, and GetFontinfo will tell you how
much vertical space. You can draw text with DrawChar, DrawString, and DrawText.

The LineTo procedure draws a line from the current pen location to a given point, and
the Line procedure draws a line between two given points. You can set the pen location
with the MoveTo or Move procedure, and set other pen characteristics with PenSize,
PenMode, and PenPat.

In addition to drawing text and lines, you can use QuickDraw to draw a variety of
shapes. Most of them are defined simply by a rectangle that encloses the shape. Others
require you to call a series of routines to define them:

< To define a region, call the NewRgn function to allocate space for it,
then call OpenRgn, and then specify the outline of the region by calling
routines that draw lines and shapes. End the region definition by calling
CloseRgn. When you’re completely done with the region, call DisposeRgn
to release the memory it occupies.

= To define a polygon, call the OpenPoly function and then form the polygon
by calling procedures that draw lines. Call ClosePoly when you’re finished
defining the polygon, and KillPoly when you’re completely done with it.

You can perform the following graphic operations on rectangles, rounded-corner
rectangles, ovals, arcs/wedges, regions, and polygons:

frame, to outline the shape using the current pen pattern and size
paint, to fill the shape using the current pen pattern

erase, to paint the shape using the current background pattern
invert, to invert the pixels In the shape

fill, to Till the shape with a specified pattern

QuickDraw pictures let you record and play back complex drawing sequences. To define a
picture, call the OpenPicture function and then the drawing routines that form the
picture. Call ClosePicture when you’re finished defining the picture. To draw a
picture, call DrawPicture. When you’re completely done with a picture, call
KillPicture (or the Resource Manager procedure ReleaseResource, if the picture’s a
resource).

You”ll use points, rectangles, and regions not only when drawing with QuickDraw, but
also when using other parts of the Toolbox and Operating System. At times, you may
find it useful to perform calculations on these entities. You can, for example, add
and subtract points, and perform a number of calculations on rectangles and regions,
such as offsetting them, rescaling them, calculating their union or intersection, and
SO on.

Note: When performing a calculation on entities in different grafPorts,
you need to adjust to a common coordinate system First, by calling
LocalToGlobal to convert to global coordinates.

To transfer a bit image from one bit map to another, you can use the CopyBits
procedure. For example, you can call SetPortBits to change the bit map of the current
grafPort to an off-screen buffer, draw into that grafPort, and then call CopyBits to
transfer the image from the off-screen buffer onto the screen.

The SeedFill and CalcMask procedures operate on a portion of a bitmap. In both
routines, srcPtr and dstPtr point to the beginning of the data to be filled or
calculated, not to the beginning of the bitmap; both parameters must point to word
boundaries in memory. SrcRow and dstRow specify the row width in bytes (in other
words, the rowBytes field of the BitMap record) of the source and destination bitmaps
respectively. Height and words determine the number of bits to be filled or
calculated; words is the width of the rectangle in words and height is the height of

SpInside Macintosh -- May 1992 -- 114 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

the rectangle in pixels. Figure 19 illustrates the use of these parameters.
e=<Click on the lllustration button, and refer to Figure 19.eee

Figure 19-Parameters Used by SeedFill and CalcMask

QUICKDRAW ROUTINES

GrafPort Routines
PROCEDURE InitGraf (globalPtr: Ptr);
Call InitGraf once and only once at the beginning of your program to initialize

QuickDraw. It initializes the global variables listed below (as well as some private
global variables for its own internal use).

Variable Type Initial setting

thePort GrafPtr NIL

white Pattern An all-white pattern
black Pattern An all-black pattern

gray Pattern A 50% gray pattern

ItGray Pattern A 25% gray pattern

dkGray Pattern A 75% gray pattern

arrow Cursor The standard arrow cursor
screenBits BitMap The entire screen
randSeed LONGINT 1

You must pass, in the globalPtr parameter, a pointer to the first QuickDraw global
variable, thePort. From Pascal programs, you should always pass @thePort for
globalPtr.

Assembly-language note: The QuickDraw global variables are stored in reverse
order, from high to low memory, and require the number
of bytes specified by the global constant grafSize.
Most development systems (including the Lisa Workshop)
preallocate space for these globals immediately below
the location pointed to by register A5. Since thePort
is four bytes, you would pass the globalPtr parameter
as follows:

PEA -4(A5)
_InitGraf

InitGraf stores this pointer to thePort in the
location pointed to by A5. This value is used as a
base address when accessing the other QuickDraw global
variables, which are accessed using negative offsets
(the offsets have the same names as the Pascal global
variables). For example:

MOVE.L (A5),A0 ;point to first
; QuickDraw global
MOVE.L randSeed(A0),Al ;get global variable
; randSeed

Note: To initialize the cursor, call InitCursor (described under
“Cursor-Handling Routines” below).

PROCEDURE OpenPort (port: GrafPtr);

OpenPort allocates space for the given grafPort’s visRgn and clipRgn, initializes the
fields of the grafPort as indicated below, and makes the grafPort the current port (by

SpInside Macintosh -- May 1992 -- 115 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

calling SetPort). OpenPort is called by the Window Manager when you create a window,
and you normally won”t call it yourself. If you do call OpenPort, you can create the
grafPtr with the Memory Manager procedure NewPtr or reserve the space on the stack
(with a variable of type GrafPort).

Field Type Initial setting

device INTEGER 0 (the screen)

portBits BitMap screenBits

portRect Rect screenBits._bounds

VisRgn RgnHandle handle to a rectangular region coincident
with screenBits.bounds

clipRgn RgnHandle handle to the rectangular region
(—32767,-32767) (32767,32767)

bkPat Pattern white

fillPat Pattern black

pnLoc Point (0,0)

pnSize Point @,

pnMode INTEGER patCopy

pnPat Pattern black

pnVis INTEGER 0 (visible)

txFont INTEGER 0 (system font)

txFace Style plain

txMode INTEGER srcor

txSize INTEGER 0 (system font size)

SpExtra Fixed 0

fgColor LONGINT blackColor

bkColor LONGINT whiteColor

colrBit INTEGER 0

patStretch INTEGER 0

picSave Handle NIL

rgnSave Handle NIL

polySave Handle NIL

grafProcs QDProcsPtr NIL

PROCEDURE InitPort (port: GrafPtr);

Given a pointer to a grafPort that’s been opened with OpenPort, InitPort reinitializes
the fields of the grafPort and makes it the current port. It’s unlikely that you’ll
ever have a reason to call this procedure.

Note: [InitPort does everything OpenPort does except allocate space for
the visRgn and clipRgn.

PROCEDURE ClosePort (port: GrafPtr);

ClosePort releases the memory occupied by the given grafPort’s visRgn and clipRgn.
When you’re completely through with a grafPort, call this procedure and then dispose
of the grafPort with the Memory Manager procedure DisposPtr

(if it was allocated with NewPtr). This is normally done for you when you call the
Window Manager to close or dispose of a window.

Warning: If ClosePort isn’t called before a grafPort is disposed of, the
memory used by the visRgn and clipRgn will be unrecoverable.

PROCEDURE SetPort (port: GrafPtr);

SetPort makes the specified grafPort the current port.

Note: Only SetPort (and OpenPort and InitPort, which call it) changes the
current port. All the other routines in the Toolbox and Operating
System (even those that call SetPort, OpenPort, or InitPort) leave
the current port set to what it was when they were called.

The global variable thePort always points to the current port. All QuickDraw drawing
routines affect the bit map thePort™.portBits and use the local coordinate system of

Splnside Macintosh -- May 1992 -- 116 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

thePort”.

Each port has its own pen and text characteristics, which remain unchanged when the
port isn’t selected as the current port.

PROCEDURE GetPort (VAR port: GrafPtr);

GetPort returns a pointer to the current grafPort. This pointer is also available
through the global variable thePort, but you may prefer to use GetPort for better
readability of your program text. For example, a procedure could do a
GetPort(savePort) before setting its own grafPort and a

SetPort(savePort) afterwards to restore the previous port.

PROCEDURE GrafDevice (device: INTEGER);

GrafDevice sets the device Field of the current grafPort to the given value, which
consists of device-specific information that’s used by the Font Manager to achieve the
best possible results when drawing text in the grafPort. The initial value of the
device field is 0, for best results on output to the screen. For more information, see
the Font Manager chapter.

Note: This field is used for communication between QuickDraw and the Font
Manager; normally you won’t set it yourself.

PROCEDURE SetPortBits (bm: BitMap);

Assembly-language note: The macro you invoke to call SetPortBits from
assembly language is named _SetPBits.

SetPortBits sets the portBits field of the current grafPort to any previously defined
bit map. This allows you to perform all normal drawing and calculations on a buffer
other than the screen—for example, a small off-screen image for later ‘““‘stamping” onto
the screen (with the CopyBits procedure, described under

“Bit Transfer Operations” below).

Remember to prepare all fields of the bit map before you call SetPortBits.
PROCEDURE PortSize (width,height: INTEGER);

PortSize changes the size of the current grafPort’s portRect. This does not affect the
screen; it merely changes the size of the “active area” of the grafPort.

Note: This procedure is normally called only by the Window Manager.

The top left corner of the portRect remains at its same location; the width and height
of the portRect are set to the given width and height. In other words, PortSize moves
the bottom right corner of the portRect to a position relative to the top left corner.

PortSize doesn’t change the clipRgn or the visRgn, nor does it affect the local
coordinate system of the grafPort: It changes only the portRect’s width and height.
Remember that all drawing occurs only in the intersection of the portBits.bounds and
the portRect, clipped to the visRgn and the clipRgn.

PROCEDURE MovePortTo (leftGlobal,topGlobal: INTEGER);

MovePortTo changes the position of the current grafPort’s portRect. This does not
affect the screen; it merely changes the location at which subsequent drawing inside
the port will appear.

Note: This procedure is normally called only by the Window Manager
and the System Error Handler.

The leftGlobal and topGlobal parameters set the distance between the top left corner
of portBits._bounds and the top left corner of the new portRect.

Like PortSize, MovePortTo doesn’t change the clipRgn or the visRgn, nor does it affect

Splnside Macintosh -- May 1992 -- 117 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

the local coordinate system of the grafPort.
PROCEDURE SetOrigin (h,v: INTEGER);

SetOrigin changes the local coordinate system of the current grafPort. This does not
affect the screen; it does, however, affect where subsequent drawing inside the port
will appear.

The h and v parameters set the coordinates of the top left corner of the portRect. All
other coordinates are calculated from this point; SetOrigin also offsets the
coordinates of the portBits._bounds rectangle and the visRgn. Relative distances among
elements in the port remain the same; only their absolute local coordinates change.
All subsequent drawing and calculation routines use the new coordinate system.

Note: SetOrigin does not offset the coordinates of the clipRgn or the pen;
the pen and clipRgn “stick” to the coordinate system, and therefore
change position on the screen (unlike the portBits.bounds, portRect,
and visRgn, which “stick™ to the screen, and don’t change position).
See the “Coordinates in GrafPorts” section for an illustration.

SetOrigin is useful for readjusting the coordinate system after a scrolling operation.
(See ScrollRect under “Bit Transfer Operations” below.)

Note: All other routines in the Toolbox and Operating System preserve the
local coordinate system of the current grafPort.

PROCEDURE SetClip (rgn: RgnHandle);

SetClip changes the clipping region of the current grafPort to a region that’s
equivalent to the given region. Note that this doesn’t change the region handle, but
affects the clipping region itself. Since SetClip makes a copy of the given region,
any subsequent changes you make to that region will not affect the clipping region of
the port.

You can set the clipping region to any arbitrary region, to aid you in drawing inside
the grafPort. The initial clipRgn is an arbitrarily large rectangle.

Note: All routines in the Toolbox and Operating System preserve the
current clipRgn.

PROCEDURE GetClip (rgn: RgnHandle);

GetClip changes the given region to a region that’s equivalent to the clipping region
of the current grafPort. This is the reverse of what SetClip does. Like SetClip, it
doesn’t change the region handle. GetClip and SetClip are used to preserve the current
clipRgn (they’re analogous to GetPort and SetPort).

PROCEDURE ClipRect (r: Rect);

ClipRect changes the clipping region of the current grafPort to a rectangle that’s
equivalent to the given rectangle. Note that this doesn’t change the region handle,
but affects the clipping region itself.

PROCEDURE BackPat (pat: Pattern);

BackPat sets the background pattern of the current grafPort to the given pattern. The

background pattern is used in ScrollRect and in all QuickDraw routines that perform an
“erase” operation.

Cursor-Handling Routines
PROCEDURE InitCursor;

InitCursor sets the current cursor to the standard arrow and sets the cursor level to

SpInside Macintosh -- May 1992 -- 118 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

0, making the cursor visible. The cursor level keeps track of the number of times the
cursor has been hidden to compensate for nested calls to HideCursor and ShowCursor,
explained below.

PROCEDURE SetCursor (crsr: Cursor);

SetCursor sets the current cursor to the given cursor. If the cursor is hidden, it
remains hidden and will attain the new appearance when it’s uncovered; if the cursor
is already visible, it changes to the new appearance immediately.

The cursor image is initialized by InitCursor to the standard arrow, visible on the
screen.

Note: You’ll normally get a cursor from a resource file, by calling the
Toolbox Utility function GetCursor, and then doubly dereference the
handle it returns.

PROCEDURE HideCursor;

HideCursor removes the cursor from the screen, restoring the bits under it, and
decrements the cursor level (which InitCursor initialized to 0). Every call to
HideCursor should be balanced by a subsequent call to ShowCursor.

Note: See also the description of the Toolbox Utility procedure ShieldCursor.
PROCEDURE ShowCursor;

ShowCursor increments the cursor level, which may have been decremented by HideCursor,
and displays the cursor on the screen if the level becomes 0. A call to ShowCursor
shoulld balance each previous call to HideCursor. The level isn’t incremented beyond O,
so extra calls to ShowCursor have no effect.

The low-level interrupt-driven routines link the cursor with the mouse position, so
that if the cursor level is 0 (visible), the cursor automatically follows the mouse.
You don’t need to do anything but a ShowCursor to have the cursor track the mouse.

If the cursor has been changed (with SetCursor) while hidden, ShowCursor presents the
new Ccursor.

PROCEDURE ObscureCursor;
ObscureCursor hides the cursor until the next time the mouse is moved. It”’s normally

called when the user begins to type. Unlike HideCursor, it has no effect on the cursor
level and must not be balanced by a call to ShowCursor.

Pen and Line-Drawing Routines

The pen and line-drawing routines all depend on the coordinate system of the current
grafPort. Remember that each grafPort has its own pen; if you draw in one grafPort,
change to another, and return to the first, the pen will remain in the same location.

PROCEDURE HidePen;

HidePen decrements the current grafPort’s pnVis field, which is initialized to O by
OpenPort; whenever pnVis is negative, the pen doesn’t draw on the screen. PnVis keeps
track of the number of times the pen has been hidden to compensate for nested calls to
HidePen and ShowPen (below). Every call to HidePen should be balanced by a subsequent
call to ShowPen. HidePen is called by OpenRgn, OpenPicture, and OpenPoly so that you
can define regions, pictures, and polygons without drawing on the screen.

PROCEDURE ShowPen;

ShowPen increments the current grafPort’s pnVis field, which may have been decremented
by HidePen; if pnVis becomes 0, QuickDraw resumes drawing on the screen. Extra calls

Splnside Macintosh -- May 1992 -- 119 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

to ShowPen will increment pnVis beyond 0, so every call to ShowPen should be balanced
by a call to HidePen. ShowPen is called by CloseRgn, ClosePicture, and ClosePoly.

PROCEDURE GetPen (VAR pt: Point);

GetPen returns the current pen location, in the local coordinates of the current
grafPort.

PROCEDURE GetPenState (VAR pnState: PenState);

GetPenState saves the pen location, size, pattern, and mode in pnState, to be restored
later with SetPenState. This is useful when calling subroutines that operate in the
current port but must change the graphics pen: Each such procedure can save the pen’s
state when it’s called, do whatever it needs to do, and restore the previous pen state
immediately before returning. The PenState data type is defined as follows:

TYPE PenState = RECORD
pnLoc: Point; {pen location}
pnSize: Point; {pen size}

pnMode: INTEGER; {pen®s transfer mode}
pnPat: Pattern {pen pattern}
END;

PROCEDURE SetPenState (pnState: PenState);

SetPenState sets the pen location, size, pattern, and mode in the current grafPort to
the values stored in pnState. This is usually called at the end of a procedure that
has altered the pen parameters and wants to restore them to their state at the
beginning of the procedure. (See GetPenState, above.)

PROCEDURE PenSize (width,height: INTEGER);

PenSize sets the dimensions of the graphics pen in the current grafPort. All
subsequent calls to Line, LineTo, and the procedures that draw framed shapes in the
current grafPort will use the new pen dimensions.

The pen dimensions can be accessed in the variable thePort™.pnSize, which is of type
Point. If either of the pen dimensions is set to a negative value, the pen assumes the
dimensions (0,0) and no drawing is performed. For a discussion of how the pen draws,
see the “General Discussion of Drawing” section.

PROCEDURE PenMode (mode: INTEGER);
PenMode sets the transfer mode through which the pen pattern is transferred onto the
bit map when lines or shapes are drawn in the current grafPort. The mode may be any
one of the pattern transfer modes:

patCopy notPatCopy

pator notPatOr
patXor notPatXor
patBic notPatBic

If the mode is one of the source transfer modes (or negative), no drawing is
performed. The current pen mode can be accessed in the variable thePort™.pnMode. The
initial pen mode is patCopy, in which the pen pattern is copied directly to the bit
map -

PROCEDURE PenPat (pat: Pattern);

PenPat sets the pattern that’s used by the pen in the current grafPort. The standard
patterns white, black, gray, ItGray, and dkGray are predefined; the initial pen
pattern is black. The current pen pattern can be accessed in the variable
thePort™.pnPat, and this value can be assigned to any other variable of type Pattern.

PROCEDURE PenNormal ;

SpInside Macintosh -- May 1992 -- 120 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

PenNormal resets the initial state of the pen in the current grafPort, as follows:
Field Setting

pnSize a,1)
pnMode patCopy
pnPat black

The pen location is not changed.
PROCEDURE MoveTo (h,v: INTEGER);

MoveTo moves the pen to location (h,v) in the local coordinates of the current
grafPort. No drawing is performed.

PROCEDURE Move (dh,dv: INTEGER);

This procedure moves the pen a distance of dh horizontally and dv vertically from its
current location; it calls MoveTo(h+dh,v+dv), where (h,v) is the current location. The
positive directions are to the right and down. No drawing is performed.

PROCEDURE LineTo (h,v: [INTEGER);

LineTo draws a line from the current pen location to the location specified (in local
coordinates) by h and v. The new pen location is (h,v) after the line is drawn. See
the “General Discussion of Drawing” section.

If a region or polygon is open and being formed, its outline is infinitely thin and is
not affected by the pnSize, pnMode, or pnPat. (See OpenRgn and OpenPoly.)

PROCEDURE Line (dh,dv: [INTEGER);

This procedure draws a line to the location that’s a distance of dh horizontally and
dv vertically from the current pen location; it calls

LineTo(h+dh,v+dv), where (h,v) is the current location. The positive directions are to
the right and down. The pen location becomes the coordinates of the end of the line
after the line is drawn. See the “General Discussion of Drawing” section.

If a region or polygon is open and being formed, its outline is infinitely thin and is
not affected by the pnSize, pnMode, or pnPat. (See OpenRgn and OpenPoly.)

Text-Drawing Routines

Each grafPort has its own text characteristics, and all these procedures deal with
those of the current port.

PROCEDURE TextFont (font: INTEGER);

TextFont sets the current grafPort’s font (thePort™.txFont) to the given font number.
The initial font number is 0, which represents the system font.

PROCEDURE TextFace (face: Style);

TextFace sets the current grafPort’s character style (thePort™.txFace). The Style data
type allows you to specify a set of one or more of the following predefined constants:
bold, italic, underline, outline, shadow, condense, and extend. For example:

TextFace([bold]); {bold}

TextFace([bold, italic]); {bold and italic}
TextFace(thePort™_txFace+[bold]); {whatever it was plus bold}
TextFace(thePort™.txFace-[bold]); {whatever it was but not bold}
TextFace([D): {plain text}

PROCEDURE TextMode (mode: INTEGER);

Splnside Macintosh -- May 1992 -- 121 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

TextMode sets the current grafPort’s transfer mode for drawing text
(thePort™.txMode). The mode should be srcOr, srcXor, or srcBic. The initial transfer
mode for drawing text is srcOr.

PROCEDURE TextSize (size: INTECGER);

TextSize sets the current grafPort’s font size (thePort™.txSize) to the given number
of points. Any size may be specified, but the result will look best if the Font
Manager has the font in that size (otherwise it will scale a size it does have). The
next best result will occur if the given size is an even multiple of a size available
for the font. If O is specified, the system font size (12 points) will be used. The
initial txSize setting is O.

PROCEDURE SpaceExtra (extra: Fixed);

SpaceExtra sets the current grafPort’s spExtra field, which specifies the average
number of pixels by which to widen each space in a line of text. This is useful when
text is being fully justified (that is, aligned with both a left and a right margin).
The initial spExtra setting is O.

SpaceExtra will also accept a negative parameter, but be careful not to narrow spaces
so much that the text is unreadable.

PROCEDURE DrawChar (ch: CHAR);

DrawChar places the given character to the right of the pen location, with the left
end of its base line at the pen’s location, and advances the pen accordingly. If the
character isn’t in the font, the font’s missing symbol is drawn.

Note: |If you’re drawing a series of characters, it’s faster to make one
DrawString or DrawText call rather than a series of DrawChar calls.

PROCEDURE DrawString (s: Str255);

DrawString calls DrawChar for each character in the given string. The string is placed
beginning at the current pen location and extending right. No formatting (such as
carriage returns and line feeds) is performed by QuickDraw. The pen location ends up
to the right of the last character in the string.

Warning: QuickDraw temporarily stores on the stack all of the text you
ask it to draw, even if the text will be clipped. When drawing
large font sizes or complex style variations, it’s best to draw
only what will be visible on the screen. You can determine how
many characters will actually fit on the screen by calling the
StringWidth function before calling DrawString.

PROCEDURE DrawText (textBuf: Ptr; firstByte,byteCount: [INTEGER);

DrawText calls DrawChar for each character in the arbitrary structure in memory
specified by textBuf, starting firstByte bytes into the structure and continuing for
byteCount bytes (FirstByte starts at 0). The text is placed beginning at the current
pen location and extending right. No formatting (such as carriage returns and line
feeds) is performed by QuickDraw. The pen location ends up to the right of the last
character in the string.

Warning: Inside a picture definition, DrawText can’t have a byteCount
greater than 255.

Note: You can determine how many characters will actually fit on the
screen by calling the TextWidth function before calling DrawText.
(See the warning under DrawString above.)

FUNCTION CharWidth (ch: CHAR) : INTEGER;

CharWidth returns the character width of the specified character, that is, the value

Splnside Macintosh -- May 1992 -- 122 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

that will be added to the pen horizontal coordinate if the specified character is
drawn. CharWidth includes the effects of the stylistic variations set with TextFace;
if you change these after determining the character width but before actually drawing
the character, the predetermined width may not be correct. If the character is a
space, CharWidth also includes the effect of SpaceExtra.

FUNCTION StringWidth (s: Str255) - INTEGER;

StringWidth returns the width of the given text string, which it calculates by adding
the CharWidths of all the characters iIn the string (see above).

FUNCTION TextWidth (textBuf: Ptr; firstByte,byteCount: INTEGER) : INTEGER;

TextWidth returns the width of the text stored in the arbitrary structure in memory
specified by textBuf, starting firstByte bytes into the structure and continuing for
byteCount bytes (FirstByte starts at 0). TextWidth calculates the width by adding the
CharWidths of all the characters in the text. (See CharWidth, above.)

PROCEDURE MeasureText (count: [INTEGER; textAddr,charLocs: Ptr);

This procedure is designed to improve performance in specialized applications such as
word processors by providing an array version of the TextWidth function; it’s like
calling TextWidth repeatedly for a given set of characters. TextAddr points to an
arbitrary piece of text in memory, and count specifies how many characters are to be
measured.

MeasureText moves along the string and, for each character, computes the distance from
TextAddr to the right edge of the character. CharLocs should point to an array of
count + 1 integers. Upon return, the first element in the array will always contain O;
the other elements will contain pixel positions on the screen for all of the specified
characters.

Note: MeasureText only works with text displayed on the screen; since it
doesn’t go through the QuickDraw procedure StdText, it can’t be used
to measure text to be printed.

PROCEDURE GetFontiInfo (VAR info: Fontinfo);

GetFontInfo returns the following information about the current grafPort’s character
font, taking into consideration the style and size in which the characters will be
drawn: the ascent, descent, maximum character width (the greatest distance the pen
will move when a character is drawn), and leading

(the vertical distance between the descent line and the ascent line below it), all in
pixels. The Fontlnfo data type is defined as follows:

TYPE Fontinfo = RECORD
ascent: INTEGER; {ascent}
descent: INTEGER; {descent}
widMax: INTEGER; {maximum character width}
leading: INTEGER {leading}
END;

The line height (in pixels) can be determined by adding the ascent, descent, and
leading.

Drawing in Color

These routines enable applications to do color drawing on color output devices. All
nonwhite colors will appear as black on black-and-white output devices.

PROCEDURE ForeColor (color: LONGINT);

ForeColor sets the foreground color for all drawing in the current grafPort
(thePort~.fgColor) to the given color. The following standard colors are predefined:

Splnside Macintosh -- May 1992 -- 123 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

blackColor, whiteColor, redColor, greenColor, blueColor, cyanColor, magentaColor, and
yellowColor. The initial foreground color is blackColor.

PROCEDURE BackColor (color: LONGINT);

BackColor sets the background color for all drawing in the current grafPort
(thePort™_bkColor) to the given color. Eight standard colors are predefined
(see ForeColor above). The initial background color is whiteColor.

PROCEDURE ColorBit (whichBit: INTEGER);

ColorBit is called by printing software for a color printer, or other color-imaging
software, to set the current grafPort’s colrBit field to whichBit; this tells
QuickDraw which plane of the color picture to draw into. QuickDraw will draw into the
plane corresponding to bit number whichBit. Since QuickDraw can support output devices
that have up to 32 bits of color information per pixel, the possible range of values
for whichBit is O through 31. The initial value of the colrBit field is O.

Calculations with Rectangles

Calculation routines are independent of the current coordinate system; a calculation
will operate the same regardless of which grafPort is active.

Remember that if the parameters to a calculation procedure were defined in different
grafPorts, you must Ffirst adjust them to global coordinates.

PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: [INTEGER);

SetRect assigns the four boundary coordinates to the given rectangle. The result is a
rectangle with coordinates (left,top) (right,bottom).

This procedure is supplied as a utility to help you shorten your program text. If you
want a more readable text at the expense of length, you can assign integers (or
points) directly into the rectangle’s fields. There’s no significant code size or
execution speed advantage to either method.

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: [INTEGER);

OffsetRect moves the given rectangle by adding dh to each horizontal coordinate and dv
to each vertical coordinate. IT dh and dv are positive, the movement is to the right
and down; if either is negative, the corresponding movement is in the opposite
direction. The rectangle retains its shape and size; it’s merely moved on the
coordinate plane. This doesn’t affect the screen unless you subsequently call a
routine to draw within the rectangle.

PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER);

InsetRect shrinks or expands the given rectangle. The left and right sides are moved
in by the amount specified by dh; the top and bottom are moved toward the center by
the amount specified by dv. If dh or dv is negative, the appropriate pair of sides is
moved outward instead of inward. The effect is to alter the size by 2*dh horizontally
and 2*dv vertically, with the rectangle remaining centered in the same place on the
coordinate plane.

If the resulting width or height becomes less than 1, the rectangle is set to the
empty rectangle (0,0)(0,0).

FUNCTION SectRect (srcl,src2: Rect; VAR dstRect: Rect) : BOOLEAN;

SectRect calculates the rectangle that’s the intersection of the two given rectangles,
and returns TRUE if they indeed intersect or FALSE if they don’t. Rectangles that
“touch” at a line or a point are not considered intersecting, because their
intersection rectangle (actually, iIn this case, an intersection line or point) doesn’t
enclose any bits in the bit image.

SpInside Macintosh -- May 1992 -- 124 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

ITf the rectangles don’t intersect, the destination rectangle is set to (0,0)
(0,0). SectRect works correctly even if one of the source rectangles is also the
destination.

PROCEDURE UnionRect (srcl,src2: Rect; VAR dstRect: Rect);

UnionRect calculates the smallest rectangle that encloses both of the given
rectangles. It works correctly even if one of the source rectangles is also the
destination.

FUNCTION PtInRect (pt: Point; r: Rect) : BOOLEAN;

PtInRect determines whether the pixel below and to the right of the given coordinate
point is enclosed in the specified rectangle, and returns TRUE if so or FALSE if not.

PROCEDURE Pt2Rect (ptl,pt2: Point; VAR dstRect: Rect);
Pt2Rect returns the smallest rectangle that encloses the two given points.
PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER);

PtToAngle calculates an integer angle between a line from the center of the rectangle
to the given point and a line from the center of the rectangle pointing straight up
(12 o’clock high). The angle is in degrees from O to 359, measured clockwise from 12
o’clock, with 90 degrees at 3 o’clock, 180 at

6 o’clock, and 270 at 9 o’clock. Other angles are measured relative to the rectangle:
If the line to the given point goes through the top right corner of the rectangle, the
angle returned is 45 degrees, even if the rectangle isn’t square; if it goes through
the bottom right corner, the angle is 135 degrees, and so on (see Figure 20).

ee«Click on the lllustration button, and refer to Figure 20.ee-
Figure 20-PtToAngle

The angle returned might be used as input to one of the procedures that manipulate
arcs and wedges, as described below under “Graphic Operations on Arcs and Wedges™.

FUNCTION EqualRect (rectl,rect2: Rect) : BOOLEAN;

EqualRect compares the two given rectangles and returns TRUE if they’re equal or FALSE
if not. The two rectangles must have identical boundary coordinates to be considered
equal .

FUNCTION EmptyRect (r: Rect) : BOOLEAN;
EmptyRect returns TRUE if the given rectangle is an empty rectangle or FALSE if not. A

rectangle is considered empty if the bottom coordinate is less than or equal to the
top or the right coordinate is less than or equal to the left.

Graphic Operations on Rectangles

See also the ScrollRect procedure under “Bit Transfer Operations”.

PROCEDURE FrameRect (r: Rect);

FrameRect draws an outline just inside the specified rectangle, using the current
grafPort’s pen pattern, mode, and size. The outline is as wide as the pen width and as
tall as the pen height. 1t’s drawn with the pnPat, according to the pattern transfer

mode specified by pnMode. The pen location is not changed by this procedure.

If a region is open and being formed, the outside outline of the new rectangle is
mathematically added to the region’s boundary.

Splnside Macintosh -- May 1992 -- 125 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

PROCEDURE PaintRect (r: Rect);

PaintRect paints the specified rectangle with the current grafPort’s pen pattern and
mode. The rectangle is filled with the pnPat, according to the pattern transfer mode
specified by pnMode. The pen location is not changed by this procedure.

PROCEDURE EraseRect (r: Rect);

EraseRect paints the specified rectangle with the current grafPort’s background
pattern bkPat (in patCopy mode). The grafPort’s pnPat and pnMode are ignored; the pen
location is not changed.

PROCEDURE InvertRect (r: Rect);

Assembly-language note: The macro you invoke to call InvertRect from
assembly language is named _InverRect.

InvertRect inverts the pixels enclosed by the specified rectangle: Every white pixel
becomes black and every black pixel becomes white. The grafPort’s pnPat, pnMode, and
bkPat are all ignored; the pen location is not changed.

PROCEDURE FillRect (r: Rect; pat: Pattern);

FillRect fills the specified rectangle with the given pattern (in patCopy mode). The
grafPort’s pnPat, pnMode, and bkPat are all ignored; the pen location is not changed.

Graphic Operations on Ovals

Ovals are drawn iInside rectangles that you specify. If you specify a square rectangle,
QuickDraw draws a circle.

PROCEDURE FrameOval (r: Rect);

FrameOval draws an outline just inside the oval that fits inside the specified
rectangle, using the current grafPort’s pen pattern, mode, and size. The outline is as
wide as the pen width and as tall as the pen height. It’s drawn with the pnPat,
according to the pattern transfer mode specified by pnMode. The pen location is not
changed by this procedure.

If a region is open and being formed, the outside outline of the new oval is
mathematically added to the region’s boundary.

PROCEDURE PaintOval (r: Rect);

PaintOval paints an oval just inside the specified rectangle with the current
grafPort’s pen pattern and mode. The oval is filled with the pnPat, according to the
pattern transfer mode specified by pnMode. The pen location is not changed by this
procedure.

PROCEDURE EraseOval (r: Rect);

EraseOval paints an oval just inside the specified rectangle with the current
grafPort’s background pattern bkPat (in patCopy mode). The grafPort’s pnPat and pnMode
are ignored; the pen location is not changed.

PROCEDURE InvertOval (r: Rect);

InvertOval inverts the pixels enclosed by an oval just inside the specified rectangle:
Every white pixel becomes black and every black pixel becomes white. The grafPort’s
pnPat, pnMode, and bkPat are all ignored; the pen location is not changed.

PROCEDURE FillOval (r: Rect; pat: Pattern);

FillOoval fills an oval just inside the specified rectangle with the given pattern (in

Splnside Macintosh -- May 1992 -- 126 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

patCopy mode). The grafPort’s pnPat, pnMode, and bkPat are all ignored; the pen
location is not changed.

Graphic Operations on Rounded-Corner Rectangles
PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

FrameRoundRect draws an outline just inside the specified rounded-corner rectangle,
using the current grafPort’s pen pattern, mode, and size. OvalWidth and ovalHeight
specify the diameters of curvature for the corners (see Figure 21). The outline is as
wide as the pen width and as tall as the pen height.

It’s drawn with the pnPat, according to the pattern transfer mode specified by pnMode.
The pen location is not changed by this procedure.

ee«Click on the lllustration button, and refer to Figure 21.eee
Figure 21-Rounded-Corner Rectangle

If a region is open and being formed, the outside outline of the new rounded-corner
rectangle iIs mathematically added to the region’s boundary.

PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

PaintRoundRect paints the specified rounded-corner rectangle with the current
grafPort’s pen pattern and mode. OvalWidth and ovalHeight specify the diameters of
curvature for the corners.

The rounded-corner rectangle is filled with the pnPat, according to the pattern
transfer mode specified by pnMode. The pen location is not changed by this procedure.

PROCEDURE EraseRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

EraseRoundRect paints the specified rounded-corner rectangle with the current
grafPort’s background pattern bkPat (in patCopy mode).

OvalWidth and ovalHeight specify the diameters of curvature for the corners. The
grafPort’s pnPat and pnMode are ignored; the pen location is not changed.

PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER);

Assembly-language note: The macro you invoke to call InvertRoundRect from
assembly language is named _InverRoundRect.

InvertRoundRect inverts the pixels enclosed by the specified rounded-corner rectangle:
Every white pixel becomes black and every black pixel becomes white. OvalWidth and
ovalHeight specify the diameters of curvature for the corners. The grafPort’s pnPat,
pnMode, and bkPat are all ignored; the pen location is not changed.

PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: INTEGER;
pat: Pattern);

FillRoundRect fills the specified rounded-corner rectangle with the given pattern (in
patCopy mode). OvalWidth and ovalHeight specify the diameters of curvature for the
corners. The grafPort’s pnPat, pnMode, and bkPat are all ignored; the pen location is
not changed.

Graphic Operations on Arcs and Wedges

These procedures perform graphic operations on arcs and wedge-shaped sections of
ovals. See also PtToAngle under “Calculations with Rectangles™.

PROCEDURE FrameArc (r: Rect; startAngle,arcAngle: [INTEGER);

Splnside Macintosh -- May 1992 -- 127 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

FrameArc draws an arc of the oval that fits inside the specified rectangle, using the
current grafPort’s pen pattern, mode, and size. StartAngle indicates where the arc
begins and is treated MOD 360. ArcAngle defines the extent of the arc. The angles are
given in positive or negative degrees; a positive angle goes clockwise, while a
negative angle goes counterclockwise. Zero degrees is at 12 o’clock high, 90 (or —270)
is at 3 o’clock, 180 (or —180) is at 6 o’clock, and 270 (or —90) is at 9 o’clock.
Other angles are measured relative to the enclosing rectangle: A line from the center
of the rectangle through its top right corner is at 45 degrees, even if the rectangle
isn’t square; a line through the bottom right corner is at 135 degrees, and so on (see
Figure 22).

e=<Click on the Illustration button, and refer to Figure 22_eee
Figure 22-Operations on Arcs and Wedges

The arc is as wide as the pen width and as tall as the pen height. It’s drawn with the
pnPat, according to the pattern transfer mode specified by pnMode. The pen location is
not changed by this procedure.

Warning: FrameArc differs from other QuickDraw routines that frame shapes
in that the arc is not mathematically added to the boundary of a
region that’s open and being formed.

Note: QuickDraw doesn’t provide a routine for drawing an outlined wedge
of an oval.

PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: INTECGER);

PaintArc paints a wedge of the oval just inside the specified rectangle with the
current grafPort’s pen pattern and mode. StartAngle and arcAngle define the arc of the
wedge as in FrameArc. The wedge is filled with the pnPat, according to the pattern
transfer mode specified by pnMode. The pen location is not changed by this procedure.

PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: [INTEGER);

EraseArc paints a wedge of the oval just inside the specified rectangle with the
current grafPort’s background pattern bkPat (in patCopy mode). StartAngle and arcAngle
define the arc of the wedge as in FrameArc. The grafPort’s pnPat and pnMode are
ignored; the pen location is not changed.

PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER);

InvertArc inverts the pixels enclosed by a wedge of the oval just inside the specified
rectangle: Every white pixel becomes black and every black pixel becomes white.
StartAngle and arcAngle define the arc of the wedge as in FrameArc. The grafPort’s
pnPat, pnMode, and bkPat are all ignored; the pen location is not changed.

PROCEDURE FillArc (r: Rect; startAngle,arcAngle: INTEGER; pat: Pattern);

FillArc fills a wedge of the oval just inside the specified rectangle with the given
pattern (in patCopy mode). StartAngle and arcAngle define the arc of the wedge as in
FrameArc. The grafPort’s pnPat, pnMode, and bkPat are all ignored; the pen location is
not changed.

Calculations with Regions

Remember that if the parameters to a calculation procedure were defined in different
grafPorts, you must First adjust them to global coordinates.

FUNCTION NewRgn : RgnHandle;

NewRgn allocates space for a new, variable-size region, initializes it to the empty
region defined by the rectangle (0,0)(0,0), and returns a handle to the new region.

Splnside Macintosh -- May 1992 -- 128 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

Warning: Only this function creates new regions; all other routines just
alter the size and shape of existing regions. Before a region’s
handle can be passed to any drawing or calculation routine, space
must already have been allocated for the region.

PROCEDURE OpenRgn;

OpenRgn tells QuickDraw to allocate temporary space and start saving lines and framed
shapes for later processing as a region definition. While a region is open, all calls
to Line, LineTo, and the procedures that draw framed shapes

(except arcs) affect the outline of the region. Only the line endpoints and shape
boundaries affect the region definition; the pen mode, pattern, and size do not affect
it. In fact, OpenRgn calls HidePen, so no drawing occurs on the screen while the
region is open (unless you called ShowPen just after OpenRgn, or you called ShowPen
previously without balancing it by a call to HidePen). Since the pen hangs below and
to the right of the pen location, drawing lines with even the smallest pen will change
bits that lie outside the region you define.

The outline of a region is mathematically defined and infinitely thin, and separates
the bit image into two groups of bits: Those within the region and those outside it.
A region should consist of one or more closed loops. Each framed shape itself
constitutes a loop. Any lines drawn with Line or LineTo should connect with each other
or with a framed shape. Even though the on-screen presentation of a region is clipped,
the definition of a region is not; you can define a region anywhere on the coordinate
plane with complete disregard for the location of various grafPort entities on that
plane.

When a region is open, the current grafPort’s rgnSave field contains a handle to
information related to the region definition. If you want to temporarily disable the
collection of lines and shapes, you can save the current value of this field, set the
field to NIL, and later restore the saved value to resume the region definition. Also,
calling SetPort while a region is being formed will discontinue formation of the
region until another call to SetPort resets the region’s original grafPort.

Warning: Do not call OpenRgn while another region or polygon is already
open. All open regions but the most recent will behave strangely.

Note: Regions are limited to 32K bytes.
PROCEDURE CloseRgn (dstRgn: RgnHandle);

CloseRgn stops the collection of lines and framed shapes, organizes them into a region
definition, and saves the resulting region in the region indicated by dstRgn. CloseRgn
does not create the destination region; space must already have been allocated for it.
You should perform one and only one CloseRgn for every OpenRgn. CloseRgn calls
ShowPen, balancing the HidePen call made by OpenRgn.

Here’s an example of how to create and open a region, define a barbell shape, close
the region, draw it, and dispose of it:

barbell := NewRgnj; {create a new region}
OpenRgn; {begin collecting stuff}
SetRect(tempRect,20,20,30,50); {form the left weight}
FrameOval (tempRect) ;
SetRect(tempRect,25,30,85,40); {form the bar}
FrameRect(tempRect);
SetRect(tempRect,80,20,90,50); {form the right weight}
FrameOval (tempRect) ;
CloseRgn(barbell); {we"re done; save in barbell}
FillRgn(barbell,black); {draw it on the screen}
DisposeRgn(barbell) {dispose of the region}

PROCEDURE DisposeRgn (rgn: RgnHandle);

Assembly-language note: The macro you invoke to call DisposeRgn from

SpInside Macintosh -- May 1992 -- 129 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

assembly language is named _DisposRgn.

DisposeRgn releases the memory occupied by the given region. Use this only after
you’re completely through with a temporary region.

PROCEDURE CopyRgn (srcRgn,dstRgn: RgnHandle);

CopyRgn copies the mathematical structure of srcRgn into dstRgn; that is, it makes a
duplicate copy of srcRgn. Once this is done, srcRgn may be altered (or even disposed
of) without affecting dstRgn. CopyRgn does not create the destination region; space

must already have been allocated for it.

PROCEDURE SetEmptyRgn (rgn: RgnHandle);

SetEmptyRgn destroys the previous structure of the given region, then sets the new
structure to the empty region defined by the rectangle (0,0)(0,0).

PROCEDURE SetRectRgn (rgn: RgnHandle; left,top,right,bottom: [INTEGER);

Assembly-language note: The macro you invoke to call SetRectRgn from
assembly language is named _SetRecRgn.

SetRectRgn destroys the previous structure of the given region, and then sets the new
structure to the rectangle specified by left, top, right, and bottom.

IT the specified rectangle is empty (that is, right<=left or bottom<=top), the region
is set to the empty region defined by the rectangle (0,0)(0,0).

PROCEDURE RectRgn (rgn: RgnHandle; r: Rect);

RectRgn destroys the previous structure of the given region, and then sets the new
structure to the rectangle specified by r. This is the same as SetRectRgn, except the
given rectangle is defined by a rectangle rather than by four boundary coordinates.

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: INTEGER);

Assembly-language note: The macro you invoke to call OffsetRgn from
assembly language is named _OfsetRgn.

OffsetRgn moves the region on the coordinate plane, a distance of dh horizontally and
dv vertically. This doesn’t affect the screen unless you subsequently call a routine
to draw the region. If dh and dv are positive, the movement is to the right and down;
if either is negative, the corresponding movement is in the opposite direction. The
region retains its size and shape.

Note: OffsetRgn is an especially efficient operation, because most of
the data defining a region is stored relative to rgnBBox and so
isn’t actually changed by OffsetRgn.

PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: INTEGER);

InsetRgn shrinks or expands the region. All points on the region boundary are moved
inwards a distance of dv vertically and dh horizontally; if dh or dv is negative, the
points are moved outwards in that direction. InsetRgn leaves the region “centered” at
the same position, but moves the outline in (for positive values of dh and dv) or out
(for negative values of dh and dv). InsetRgn of a rectangular region works just like
InsetRect.

Note: InsetRgn temporarily uses heap space that’s twice the size of
the original region.

PROCEDURE SectRgn (SrcRgnA,srcRgnB,dstRgn: RgnHandle);
SectRgn calculates the intersection of two regions and places the intersection in a

third region. This does not create the destination region; space must already have
been allocated for it. The destination region can be one of the source regions, if

SpInside Macintosh -- May 1992 -- 130 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

desired.

If the regions do not intersect, or one of the regions is empty, the destination is
set to the empty region defined by the rectangle (0,0)(0,0).

Note: SectRgn may temporarily use heap space that’s twice the size of
the two input regions.

PROCEDURE UnionRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

UnionRgn calculates the union of two regions and places the union in a third region.
This does not create the destination region; space must already have been allocated
for it. The destination region can be one of the source regions, if desired.

If both regions are empty, the destination is set to the empty region defined by the
rectangle (0,0)(0,0).

Note: UnionRgn may temporarily use heap space that’s twice the size of
the two input regions.

PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

DiffRgn subtracts srcRgnB from srcRgnA and places the difference in a third region.
This does not create the destination region; space must already have been allocated
for it. The destination region can be one of the source regions, if desired.

If the first source region is empty, the destination is set to the empty region
defined by the rectangle (0,0)(0,0).

Note: DiffRgn may temporarily use heap space that’s twice the size of
the two input regions.

PROCEDURE XorRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

XorRgn calculates the difference between the union and the intersection of srcRgnA and
srcRgnB and places the result in dstRgn. This does not create the destination region;
space must already have been allocated for it. The destination region can be one of
the source regions, if desired.

If the regions are coincident, the destination is set to the empty region defined by
the rectangle (0,0)(0,0).

Note: XorRgn may temporarily use heap space that’s twice the size of
the two input regions.

FUNCTION PtiInRgn (pt: Point; rgn: RgnHandle) : BOOLEAN;

PtInRgn checks whether the pixel below and to the right of the given coordinate point
is within the specified region, and returns TRUE if so or FALSE if not.

FUNCTION RectlnRgn (r: Rect; rgn: RgnHandle) : BOOLEAN;

RectInRgn checks whether the given rectangle intersects the specified region, and
returns TRUE if the intersection encloses at least one bit or FALSE if not.

Note: RectlnRgn will sometimes return TRUE when the rectangle merely
intersects the region’s enclosing rectangle. If you need to know
exactly whether a given rectangle intersects the actual region,
you can use RectRgn to set the rectangle to a region, and call
SectRgn to see whether the two regions intersect: If the result
of SectRgn is an empty region, then the rectangle doesn’t intersect
the region.

FUNCTION EqualRgn (rgnA,rgnB: RgnHandle) : BOOLEAN;

EqualRgn compares the two given regions and returns TRUE if they’re equal or FALSE if

Splnside Macintosh -- May 1992 -- 131 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

not. The two regions must have identical sizes, shapes, and locations to be considered
equal. Any two empty regions are always equal.

FUNCTION EmptyRgn (rgn: RgnHandle) : BOOLEAN;

EmptyRgn returns TRUE if the region is an empty region or FALSE if not. Some of the
circumstances in which an empty region can be created are: a NewRgn call; a CopyRgn
of an empty region; a SetRectRgn or RectRgn with an empty rectangle as an argument;
CloseRgn without a previous OpenRgn or with no drawing after an OpenRgn; OffsetRgn of
an empty region; InsetRgn with an empty region or too large an inset; SectRgn of
nonintersecting regions; UnionRgn of two empty regions; and DiffRgn or XorRgn of two
identical or nonintersecting regions.

Graphic Operations on Regions

These routines all depend on the coordinate system of the current grafPort. ITf a
region is drawn in a different grafPort than the one in which it was defined, it may
not appear in the proper position in the port.

PROCEDURE FrameRgn (rgn: RgnHandle);

FrameRgn draws an outline just inside the specified region, using the current
grafPort’s pen pattern, mode, and size. The outline is as wide as the pen width and as
tall as the pen height. It’s drawn with the pnPat, according to the pattern transfer
mode specified by pnMode. The outline will never go outside the region boundary. The
pen location is not changed by this procedure.

If a region is open and being formed, the outside outline of the region being framed
is mathematically added to that region’s boundary.

Note: FrameRgn actually does a CopyRgn, an InsetRgn, and a DiffRgn;

it may temporarily use heap space that’s three times the size

of the original region.
PROCEDURE PaintRgn (rgn: RgnHandle);
PaintRgn paints the specified region with the current grafPort’s pen pattern and pen
mode. The region is filled with the pnPat, according to the pattern transfer mode
specified by pnMode. The pen location is not changed by this procedure.
PROCEDURE EraseRgn (rgn: RgnHandle);
EraseRgn paints the specified region with the current grafPort’s background pattern
bkPat (in patCopy mode). The grafPort’s pnPat and pnMode are ignored; the pen location
is not changed.
PROCEDURE InvertRgn (rgn: RgnHandle);

Assembly-language note: The macro you invoke to call InvertRgn from
assembly language is named _InverRgn.

InvertRgn inverts the pixels enclosed by the specified region: Every white pixel
becomes black and every black pixel becomes white. The grafPort’s pnPat, pnMode, and
bkPat are all ignored; the pen location is not changed.

PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern);

FillRgn Ffills the specified region with the given pattern (in patCopy mode). The
grafPort’s pnPat, pnMode, and bkPat are all ignored; the pen location is not changed.

Bit Map Operations

Splnside Macintosh -- May 1992 -- 132 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

PROCEDURE ScrollRect (r: Rect; dh,dv: INTEGER; updateRgn: RgnHandle);

ScrollRect shifts (“scrolls”) the bits that are inside the intersection of the
specified rectangle and the visRgn, clipRgn, portRect, and portBits.bounds of the
current grafPort. No other bits are affected. The bits are shifted a distance of dh
horizontally and dv vertically. The positive directions are

to the right and down. Bits that are shifted out of the scroll area are
lost—they’re neither placed outside the area nor saved. The space created by the
scroll is filled with the grafPort’s background pattern (thePort”.bkPat), and the
updateRgn is changed to this Filled area (see Figure 23).

e=<Click on the lllustration button, and refer to Figure 23.eee
Figure 23-Scrolling

ScrollRect doesn’t change the coordinate system of the grafPort, it simply moves the
entire document to different coordinates. Notice that ScrollRect doesn’t move the pen
and the clipRgn. However, since the document has moved, they’re in a different
position relative to the document.

To restore the coordinates of the document to what they were before the ScrollRect,
you can use the SetOrigin procedure. In Figure 23, suppose that before the ScrollRect
the top left corner of the document was at coordinates

(100,100). After ScrollRect(r,10,20...), the coordinates of the document are offset by
the specified values. You could call SetOrigin(90,80) to offset the coordinate system
to compensate for the scroll (see Figure 14 in the

“Coordinates in GrafPorts” section for an illustration). The document itself doesn’t
move as a result of SetOrigin, but the pen and clipRgn move down and to the right, and
are restored to their original position relative to the document. Notice that
updateRgn will still need to be redrawn.

PROCEDURE CopyBits (srcBits,dstBits: BitMap; srcRect,dstRect: Rect;
mode: INTEGER; maskRgn: RgnHandle);

CopyBits transfers a bit image between any two bit maps and clips the result to the
area specified by the maskRgn parameter. The transfer may be performed in any of the
eight source transfer modes. The result is always clipped to the maskRgn and the
boundary rectangle of the destination bit map; if the destination bit map is the
current grafPort’s portBits, it’s also clipped to the intersection of the grafPort’s
clipRgn and visRgn. If you don’t want to clip to a maskRgn, just pass NIL for the
maskRgn parameter. The dstRect and maskRgn coordinates are in terms of the
dstBits.bounds coordinate system, and the srcRect coordinates are in terms of the
srcBits.bounds coordinates.

Warning: 1f you perform a CopyBits between two grafPorts that overlap,
you must First convert to global coordinates, and then specify
screenBits for both srcBits and dstBits.

The bits enclosed by the source rectangle are transferred into the destination
rectangle according to the rules of the chosen mode. The source transfer modes are as
follows:

srcCopy notSrcCopy

srcOr notSrcXor
srcxXor notSrcOr
srcBic notSrcBic

The source rectangle is completely aligned with the destination rectangle; if the
rectangles are of different sizes, the bit image is expanded or shrunk as necessary to
fit the destination rectangle. For example, if the bit image is a circle in a square
source rectangle, and the destination rectangle is not square, the bit image appears
as an oval in the destination (see Figure 24).

ee<Click on the Illustration button, and refer to Figure 24_eee

Figure 24-Operation of CopyBits

SpInside Macintosh -- May 1992 -- 133 of 1273

APPLE MACINTOSH TECHNICAL INFORMATION]|

PROCEDURE SeedFill (srcPtr,dstPtr: Ptr;
srcRow,dstRow, height,words,seedH,seedV: INTEGER);

Given a source bit image